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Abstract

This thesis examines the feasibility of using least median of

squares (LMS) procedure applied to a reweighted least squares (RLS)

autoregression model to identify significant outliers in time series data.

The time series were analyzed for data points that were outliers. In order

to perform detailed analysis on an outlier, the analyst must be able to

determine that an outlier data point is significantly different from

normally distributed data. This thesis examines a new method for

identifying these outliers.

Data from the field were characterized and fit with time series

models using an autoregressive reweighted least squares routine (ARRLS)

derived from the LMS methodology. Various orders of autoregression

were applied to the ARRLS method to determine an appropriate order for

the model; resulting fit coefficients were tested for significance.

Regression results from data taken at five sites are presented.

By using an autoregressive order of one (AR(IJ) applied to the

ARRLS, this method significantly improved outlier detection in the time

series data over the recursive removal without regression (RRR) method

currently in use. In addition to identifying the outliers found by RRR,

the AR(1)-RLS method routinely identified four times as many outliers as

AFTAC's RRR method. The AR(1)-RLS method is recommended as a

complimentary procedure to the RRR method currently used in

identifying significant outliers. After sufficient operational experience is

gained, AR(1)-RLS may supplant current schemes. Recommendations for

improvements to the AR(1)-RLS method are offered.

ix



IDENTIFICATION OF SIGNIFICANT OUTLIERS IN TIME SERIES DATA

I. Introduction

Research Problem

In recent years, the Air Force Technical Applications Center

(AFTAC) has sponsored studies to investigate methods to improve its

capability to identify significant outliers in time series data. Outlier

identification plays a central role in many cfAFTAC's efforts. Currently,

the analysts use a recursive removal technique developed by AFTAC to

identify the outliers. Some data analysts at AFTAC suggest by using this

method of outlier identification, certain events that may be significant

(but do not meet the strict three-a criteria) often go undetected.

Graphical representation of the time series reinforces this concern.

These graphs show apparent outliers in the data that do not meet the

criteria that identify them as outliers.

A new method proposed by Dr. Lloyd Currie, of the NaLonal

Institute of Science and Technology (NIST), tries to solve this problem by

using a derivative method that is based on statistical process control

theory. He proposes using a three-sample data smoother and

identification of outliers by use of z-scores. The calculation of the z-

scores is based on the first and second differences of smoothed data.



Unfortunately, t0 -erivative method also performs poorly in identifying

some obvious oi

These methods, as well as others, fail to identify obvious outliers in

the data. A Pew, robust method fcr outlier identification is required. The

research presented in this paper attempts to solve this identification

problem.

Research Objective

The objective of the research is to characterize the data, develop a

robust method to detect outliers in the data, and compare the results

with other methods currently in use. A robust method is relatively

insensitive to the presence of the outliers it is attempting to identify. The

aim of this research is to provide the analyst with an additional

statistical tool to identify significant outliers in time series data.

Scope, Limitations, and Assumptions

This effort is concerned with time series data. This thesis is

limited to the following:

1. Implement an Autoregressive Reweighted Ikast Squares (AR(1)-

RLS) algorithm for the identification of significant outliers in time

series data.

2. Benchmark the procedure with actual data sets. Determine the

minimum adequate order of autoregression for these data series.
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3. Perform a comparison of the derivative alorithm. the AFT"AC RIM

method currently used in outlier identification, and tile AR{I)-RLS

method.

The final product will be a test methodology utilizing AR(l)-RL,,S. which Is

capable of identifying outliers in time series data.

For this thesis, the following assumptions apply: all data In the

time series are discrete data samples, drawn at unifonn sampling

intervals; massaging of the data to account for missing data points will

not be performed, the method of analysis itself will handle a finite

number of missing data points, the data do not approximate a normal

distribution, but contain long tails of outliers: non-outliers may be non-

normal. While the data points will have some measurement errors.

uncertainty estimates will not be used In the analysis. Measurement

errors are less than one percent and are negligible compared to the time

series variations.

Organizational Overview

Chapter Two describes the type of data analyzed. The types of

analytical to~ls available for analysis of time series data are also

discussed. Attention is Lrought to thle TAC method of data analysis as

well as other roposed methods. Finally. the Rewelghted Least Squares

(RLS) techniqt e Is introduced and its merits discussed. Chapter Three

begins with Roussecuw's devt lopment of the reweighted least squares

procedure by first discussing the problems encountered with using a

3



conventional least mean of squared residuals fit when outliers are

present. This is followed with the development of the least median of

squared residuals procedure that produces weights that can be applied

to the least squares process to produce a robust method for Identifying

outliers and fitting data with outliers.

Chapter Four develops the test methodology that is the basis for

determining the appropriate order of autoregression for the outlier

detection model. In this chapter, the development of the graphical

methods for displaying the data is presented. Problems with the least

squares method and why the development of the reweighted least

squares was necessary are expounded. Following the method

development sections, the available commercial software that implements

the LMS routine is discussed. In Chapter Five, the test methodology of

Chapter Four is applied to the example data sets provided by AFTAC and

the results are discussed. Confidence tests and goodness of fit tests are

performed to determine the appropriate order to be used in the model.

AR(1I-RLS, AFTAC RRR method, and derivative method results are

compared. The conclusions and recommendations of the thesis follow in

Chapter Six.

4



I. Background

A major part of work being performed at AFTAC involves detecting

a significant signal or event out of a noisy background environment. The

AFTAC analyst needs a preliminary identification that a significant

amount of a radionuclide was released into the environment. This

significant amount is called an outlier. It is these outliers that interest

the analyst. An outlier is significant if its value is above a background or

baseline value. A background level is calculated for each series of data

and is therefore series specific. Measurements of the radionuclide in the

environment are taken on a daily basis. Throughout this thesis, the

recorded value of the radionuclide is referred to as the K-value. The

objective here is to determine when a particular concentration of the

radionuclide or K-value in the environment is significantly elevated above

the calculated background value.

The current outlier Identification procedure involves selecting a

data population centered on a particular data point. Using this

population, an average value is computed. The number of standard

deviations that data point is above the average value is determined, and

any data point above three-a is rejected. This rejection is performed until

no points exceed three-a. This final average is called the background

value. Finally, detailed analysis is performed on any value in the

population that is more than three-a above the calculated background

value. As will be shown, this method is flawed and often fails to identify

some obvious outliers.
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Introduction

This chapter describes the basics of a time series. The types of

time series, the makeup of our data as It relates to a time series, and

specific notatior( used in time series analyses are reviewed.

The methodology currently in place at AFTAC to identify outliers in

time series data as well as the problems associated with this approach

are discussed. This is followed by a discussion of other proposed

methods of analysis to find significant outliers in the time series data.

Finally, the methodology based on the reweighted least squares

technique and the advantages it offers in detecting significant outliers

are introduced.

Time Series Analysis

Description of the Time Series. hi its basic form, a time-series is no

more than a set of data [y,:t=l ..... n} in which the subscript t indicates the

time at which the data y, was observed. Diggle categorized time series

data as follows:

1. The points in time at which the observations are taken are not

equally spaced. The notation for this type of data is {y(t:i=1,...,n}.

2. Each data point represents an accumulation of some quantity over

a specified inteival of time, rather than its value at a single point.

Daily rainfall totals fall into this category.

6



3. The data set may be augmented by replicate series. Control

groups where the same data is taken over a specified period of time

fall into this category.

4. Each scalar quantity y, might be replaced by a vector Y, (Yjt .... Yp=)

giving the values of p quantities which are in some way related. An

example of this type might be a daily reading of the temperature,

blood pressure, and pulse rate of a hospital patient. (Diggle

1990:1)

The type of time series of interest fL.: this research topic is that of

the second category above. Namely. data that are accumulated over the

course of a day and reported as a single measurement. Figure 1 is a

graphical example of this data. This figure represents nearly two years of

data from one site and is typical of the type of data to be analyzed.

An important aspect in time series analysis is stationarity of the

data. Most research work in time series analysis has been concerned

with the properties of stationary time series. However, if the series is not

stationary, then various techniques can be used to remove obvious

trends from the series. The most common method to remove trends from

a series is differencing. Differencing is used extensively in the derivative

method discussed later in this thesis. Jenkins went on to separate time

series data into three broad categories based on stationarity:

1. Those which are stationary over relatively long periods of time

because of some form of control over external conditions.

7
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2. Those series which may be treated as stationary provided a

sufficiently short length of series is examined.

3. Series which are quite obviously non-stationary, both from their

visual appearance, and also from a priori knowledge of the

phenomenon being studied (Jenkins, 1968:15 1).

Examination of the type of time series of concern to AFTAC and to

be evaluated in this thesis suggests it is of the second category described

by Jenkins. For the majority of the data analysis performed, time

periods of only 30 to 90 days are analyzed. This will allow us to consider

data with some non-stationarity characteristics to be stationary.

Robustness. Hoaglin et al discuss the idea of robustness and the

* related notion of resistance. Robustness generally implies the

insensitivity of a regression procedure to wild outliers (Hoaglin and

others 1983: 2) Robustness is a necessary quality in any method

designed to identify outliers.

Martin and Yohal discussed the concept of robustness and its

importance in performing time series analysis. They stated that a robust

procedure should be applied in the time series setting. They regarded

qualitative robustness as paramount. By their definition, an estimate is

robust when it changes by only a small amount when the sample is

changed by replacing a small fraction of observations by arbitrarily large

outliers (Martin and Yohai 1985: 120-126).

Breakdown Point. In addition to the idea of robustness described

above, another important concept is that of the breakdown point. F.R.

Hample introduced the idea of breakdown in 1971. In its basic form, the

9



idea of the breakdown point of a regression estimator is the largest

fraction of data that can be moved to infinity without taking the value of

the estimate to infinity. The sample mean has a breakdown point of

zero. implying that moving a single data point to infinity will drive the

mean to infinity. However, the sample median is highly resistant with a

breakdown point of approximately h for finite sample sizes and tends to

exactly ½ as the sample size tends to infinity. The breakdown point is a

global measure of performance of an estimator (Martin and Yohal

1985:150-15 1). It is a quantitative measure of the qualitative property

called "robustness".

Hoaglin et al further defined the breakdown point of a procedure

for fitting a line to n pairs of y-versus-x data as k/n, where k is the

greatest number of data points that can be replaced by arbitrary values

while always leaving the sloe and intercept bounded. A breakdown

bound of ½ is the best one can anticipate. Beyond this bound, no

distinction can be made between fitting the good data points and fitting

outliers (Hoaglin and others, 1983: 159)

Recursive Rejection wio Regression Method of Analysis

Discussion. The data analysts at AFTAC use a method of analysis

provided in an in-house-developed software package called RPP. The

AFTAC method is hereafter referred to as the Recursive Removal without

Regression (RRR) method. This package provides the analyst with two

10



major methods to view the data, either graphically or in a series of table

listings.

RRR Algorithm. The RRR algorithm employed by AFTAC is simple

in nature but lacks robustness. The RRR is a recursive routine. The

basic algorithm uses a window of data points around a specific day that

makes up the sample population. AFTAC uses a window of 30 days

based upon statistical minimum population sizes for normally

distributed data (Tinsley, 1992).

Simply put, the routine computes filtered statistics (mean, standard

deviation, minimum and maxdmum) on the input data array. The first

step is to calculate the number of the non-zero data points in the

population. Since AFTAC specifies a population size of 30, the data set

consists of the data points 14 days prior to and 15 days after the day of

interest. The data points with zero values are first eliminated and the

mean of the remaining non-zero values is then calculated.

1S

The sum and the sum of the squares of the non-zero points are then

calculated.

NOIS

y = Eyj (2)
j n-14

a*15

Y*UMwqT (3)
j.n-14

S~11
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Once the sum and sum of the squares art-- calculated for the data set, the

standard deviation can then be computed.

= -1 (4)

With a computed, the number of standard deviations each data point in

the population is above the mean (or background value) is then

calculated. If any point is three or more standard deviations away from

the background value, Ysun and Ysumsqr are decremented by the value

and square of that value respectively. Additionally, the number of points

remaining, n, is decremented. After all the data points have been

screened and those greater than three-a removed, the a is recalculated

and each of the remaining points is again subjected to the three-a test.

This is repeated until no additional points are removed from the data set

or until the number of points remaining in the data set fall below 15.

When the cycle is complete, the mean of the remaining values now

represents the background value for that day. This background value is

then subtracted from the measured value for that day and the number of

standard deviation units is calculated. If the resulting number of

standard deviation units is greater than 3.0, the point is considered an

outlier and flagged. If more than half the values are missing or excessive

(i.e., n < 15). no statistics are calculated and no information is available

for that data point.

The RRR method is the foundation of significant outlier

identification at AFrAC today. However, it is not without its problems.

12
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Most notable is the failure of this method to identify as significant those

points in a time series which, when displayed graphically in a time series

plot, are obvious outliers. The events at days 91313 and 91328 shown in

Figure 2 illustrate this point. This "minor" problem motivates the

research being pcrformed here. Figure 2 and Table 1 illustrate the

graphical and tabular fcrm of data display produced by the RRR

algorithm.

" -am -

am-/35 Uun-SOgmLWr.

91••4 91314 91M 91=4 913M 9354
DCft

- RRR flSOMWLi*'w

Figure 2. Graphical Display of AFTAC Data

The graphical display shown in Figure 2 gives the analyst a quick

look at the site data. Any time the K-value line exceeds the three-a line.

the event is recorded as an outlier. This same information is provided in

the listing in Table 1. The listing in Table 1 provides the analyst with a

13
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quick look at the station data results. The following information is given

In the listing:

DATE VALUE BKGND a DRP

91083 6206.2 1949.4 +12.5 5.
91084 5090.6 1965.2 + 9.2 6
91085 9718.9 1965.2 +23.0 6
91086 2608.4 2648.0 0.0 2
91087 1848.5 2740.9 0.6 2
91088 2014.4 2777.2 0.5 2
91089 2423.5 2781.2 0.2 2
91090 2416.1 2730.1 0.2 3
91091 1912.3 2735.4 0.5 3
91092 2328.3 2732.3 0.3 3
91093 1891.9 2730.4 0.5 3
91094 2482.4 2843.4 0.2 3
91095 1961.8 2904.7 0.6 3
91096 1653.4 2891.8 0.8 3
91097 2250.3 2864.8 0.4 3
91098 1860.4 2693.3 0.6 3
91099 6518.5 21564.0 2.9 3
91100 40295.0 2529.3 +28.1 2
91101 6518.4 2505.8 3.0 2
91102 4164.4 2528.0 122
91103 2570.1 2516.0 0.0 2
91104 31988.5 2486.4 0.4 2

Table 1. Sample Data Listing

DATE Julian date for the observation/sample.

VALUE Actual value in arbitrary units for the observation/sample. (K-

value in this thesis)

BKGND The calculated background level based on the surrounding 30

days.

a The absolute value of the number of standard deviations a value

is above the background. VIalue-s greater than 3.0 are flagged

with a '+'.

14



DRP The number of data points dropped from the original 30 day

calculation.

One major problem with this "quick look" is the ease with which

significant data can be overlooked. Additionally, if the analyst must

examine large amounts of data, it becomes increasingly easy to overlook

an outlier.

Previously Proposed Methods of Analysis

In the past, a number of methods have been proposed to AFTAC in

an attempt to better improve the detection of significant outliers in the

analysis of time series data, but none have been adopted. For

completeness, a brief discussion of four of these methods is Included.

The Derivative Method. Dr. Lloyd A. Currie, of the National

Institute of Science and Technology, proposed a procedure that

demonstrates the derivative method of outlier detection in a background

time series. The algorithm is based on five operations, applied to the

original data set: 1) interpolation of missing days not to exceed three

days, 2) application of a three-day moving average, 3) taking of first

differences. 4) taking of second differences (repeating operation-3 on its

output), and 5) applying a control process routine to spot out-of-control

points (possible outliers), using "local" rather than "global' standard

deviation.

15



Dr. Currie explained that the control limits for this procedure are

set to ± 5 standard deviations for sound statistical reasons. In effect, the

probability (1-sided) of exceeding these limits by chance, once, in a 365

day set, is approximately 10% for the first differences and 5% for the

second differences, when there is random normal error only (null case).

Therefore, any excursion you see in the plot of the second differences

should be scrutinized as a possible outlier. Significant excursions in the

second difference must be negative (negative curvature for a positive

outlier), and must be beyond the control limit of -5.0 ("z-score") (Currie

1992).

Dr. Currie provided the following as the pseudo-code for the

derivative method for outlier detection. Appendix B contains the

algorithm coded in BASIC.

Step- 1: Isolate the time series data vector, length-n, to be studied.

If it has missing value sequences exceeding length three, break it into

sub sequences which do not. Given the time series, yi, 1!iLn, the

smoothed series Y, is

(yi= - +Y, + Y÷i), for 2 <i<n-1. (5)
3

Step-2: Create a first difference vector, by operating on the

smoothed series 35. The first difference, AY,, is

A3•= Y=3i Y-, for 2<i9n-4. (6)

16



Step-3: Repeat step-2. this time operating on the first difference

vector, resulting in a second difference vector. The second difference.
SAis

b

= Ay,÷,- Ay, for2!;i :n-7. (7)

Step-4: Perform an ordinary control chart operation on the

Individual elements of first and second difference series, where the

"group size" is unity. Compute the mean value for each series as the

sum of the elements divided by n-5 or n-8. as appropriate (Dr. Currie

used n-3 and n-8 respectively, but this is incorrect). Ideally. the

expected values of these means would be zero. The mean of the first and

second difference series. - and A2Y,,. are

~.L. (8)
n-5

(9)
n-8

Next, estimate the "within" or "local" standard deviation ("process-

a"). using the simplest approach, the range technique. Compute the

sequence of ranges as the differences between each pair of elements The

range of the first differences, R-. is

R<m-A•3,+-~A,, for 2i!5n-4 (10)

The range of the second differences. R2, is

17



, A Y•,.,-A Y•,. for 2!ýi:n-7 01 1)

Next, compute the average absolute range. as the sum of the

absolute values of the differences (ranges) divided by the range vector

length.

x-4

R, =.I.(12)
n-5

and

"n-7

(13
n-8

The statistical factor 'd2' (1.128) converts the mean ranges (for

observation pairs) to estimated standard deviations. This gives an

estimated a for each range of differences, acI and 02 as

a,128 (14)1.128

and

0r2 1.28 (15)1.128

This mean range divided by 1. 128 gives an estimate of the "process a."

(Ryan. 1989: 84-85. 343).

18
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Step-5: Finally, compute the vector of "z-scores" for the first and

second differences. The z-score, zi, is

zI=AM, for2<i5n-5 (16)
aO'

and

z , for 2<i-n-8. (17)

For reasons discussed above, Dr. Currie sets the control limits for

z at + 5 for the first difference and at - 5 for the second difference. Dr.

Currie went on to explain that this procedure is specifically designed to

look for outliers that occur as the result of a 'local incursion' and is not

valid for 'long range events' which cannot be accurately predicted by the

model. (Currie, 1991:1-2).

The STh Procedure. STL is a filtering procedure for decomposing a

seasonal time series into seasonal, trend, and remainder components.

STL has a simple design that consists of a sequence of applications of the

LOESS smoother. The simplicity allows analysis of the properties of the

procedure and allows fast computation, even for very long time series

and large amounts of seasonal and trend smoothing. Other features

include: the specification of amounts of seasonal and trend smoothing

which range from very small to very large; robust estimates of the

seasonal and trend components that are not distorted by aberrant

behavior in the data; specification of the period of the seasonal
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component as any integer multiple of the time sampling interval greater

than one. (ENSCO: 1-2)

The LOESS Procedure. LOESS is a nonparametric regression using

multivariate smoothing by moving least squares to fit data. Loess

estimates regression surfaces by multivariate smoothing: fitting a locally

linear or quadratic function of the independent variables in a moving

fashion. This is analogous to how a moving average is computed for a

time series. Compared to classical approaches -- fitting global

parametric functions -- LOESS substantially increases the domain of

surfaces that can be estimated without distortion. Also, a useful feature

of LOESS is !that analogs of the statistical procedures used in parametric
1

function fitting -- for example, ANOVA and t intervals -- involve statistics

whose distributions are well approximated by familiar distributions

(ENSCO: 1-2).

The LOWESS Procedure. The LOWESS program contains the

routines for the classical LOESS algorithm. It smoothes only as a locally

linear function of one independent variable, computes the LOESS curve

only at the values of the independent variable in the data set, and

computes no statistics. According to ENSCO, you can readily use

LOWESS for smoothing scatter plots, since it is simple and fast.

Smoothing can be carried out for more than one independent variable,

the LOESS surface can be computed at any collection of values In the

space of the Independent variables, and statistics for confidence intervals

and ANOVA can be computed. (ENSCO: 2)

STL, LOWESS, and LOESS were not adapted by AFTAC, mainly

due to the complexity in their implementation and the manipulation of
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the data necessary to get it into a form usable by the procedure. In

particular, LOWESS and LOESS required the analyst to make subjective

inputs into the model. The derivative method is occasionally being used

in limited cases, but has not yet been formally accepted. Again, the

limitations of the procedure, the problems associated with missing data,

and the requirement for 'local incursion' make its widespread use

unlikely (Tinsley, 1992).

Limitations

In each of the previous sections that deal with either methods in

use or proposed methods, limitations with these methods have been

identified. These limitations range from difficulty of use and

implementation (with the LOWESS. LOESS, and STL methods) to

manipulation of the data (with the derivative method). The most

disquieting problem exdists with the RRR method. In many obvious cases

of outliers in the data set, the method fails to identify these outliers. The

ability of the RRR method to identify probable outliers in a data set

appears to hinge not only on the magnitude of the outlier. but also on the

size of the population the data is drawn from.

This Is Illustrated in the following example with is the basis for the

RRR algorithm. Consider a data set where the value of all points is zero

except for one

x,=0 Vi(l...N)exceptone,xo. (18)
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The average of the set is

1 N 1 x (19)
=-x =

SNf - 0 No

and the sum squared is

x 2 =4ix2 =12 0_ (20)
N N N

The sample standard deviation, s, which approximates a, is given by

V s()= 2  
(21)-I

Finally, It can now be shown that the number of standard deviations a

particular point is above the mean is a function of the number of points

in the population, N, and not the magnitude of the point. This Is given

by

#of a = x0 -X
S

=x( - 4/' (22)

N-1

The results of several population sizes are tabulated in Table 2.
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Table 2

Results of Outlier Identification Using RRR Method

N r # #of a outlier
Identified?

5 0.200 0.447 1.789 no

7 0.143 0.378 2.268 no

9 0.111 0.333 2.667 no

15 0.667 0.258 3.615 yes

30 0.033 0.183 5.295 yes

The information given in Table 2 is:

N sample population size,

x arithmetic mean of the population,

a sample standard deviation,

# of a number of standard deviations above the mean the suspected

Outlier is,

outlier identification as an outlier.

As Table 2 illustrates, determining whether the data point is

Identified as an outlier Is strictly dependent on the population size. In

each case, the data point was an obvious outlier, but the population size

was the determining factor in its identification. This is a major flaw in

this method.
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As a result of the problems discussed for the various methods, it is

necessary to develop a methodology for identifying outliers which is not

influenced by the population size or the occurrence of the outliers in the

data set. To remedy chese problems, a robust method with a high

breakdown point is required. This method should not depend upon the

population size, nor should it be influenced by the presence of the

outliers it Is attempting to identify. In the next chapter, the

AutoRegressive Reweighted Least Squares (AR(1)-RLS) method is

developed. The application of the methodology shows great promise in

correcting shortcomings in the previously discussed methods.

Summary

This chapter discussed the basics of a time series and how the

data that AFTAC analyzes falls into the two general categories of time

series--each point represents an accumulation of some quantity over a

specified interval of time and that series of sufficiently short length can

be treated as stationary. The RRR method currently in place at AFTAC

as well as a number of other proposed methods for analyzing the data

was discussed. Finally, the need for a more robust method for detecting

outliers was identified. In the next chaptý r, the AR(1)-RLS methodology

is developed and followed with the applica ion of the method to detecting

outliers in the time series data.
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III. Theoretical Development

Introduction

In his book The Analysis of Time Series, Chatfield writes about

graphical displays of time series data:

The first step in analyzing a time series is to plot the observations
against time. This will show up important features such as trend,
seasonality, discontinuities and outliers (Chatfield, 1984:14).

Not only is much explanatory information gleaned from the initial

look at the graphical display of data, but it also enables the analyst to

see the behavior of the data, to see unexpected features as well as the

familiar regularities. The emphasis on the visual display of data provides

a major contribution to exploratory data analysis (Hoaglin, 1983:3-4).

APTAC Is searching for additional tools to provide the analyst an

improved capability to Identifyr significant outliers In time series data.

This chapter will begin with the development of techniques and methods

for dealing with time series data, including initial identification of outliers

by graphical displays. If possible, the analyst would like to examine all

data graphically, but AFTAC does not have the resources to do so. Thus,

what Is needed is a method of reliably flagging outliers so the analyst can

later examine the data graphically and decide on further analysis to be

performed. The graphical method then is followed by a discussion of

robust estimators, and the need for a high breakdown method.

Robustness and the breakdown point are important because an efficient
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method of outlier detection requires that the method itself not be

influenced by the presence of the outliers. The drawbacks of using the

least squares method are presented with graphical examples. Finally,

Rousseeuw's least median of squared residuals method and how it is

used to perform the reweighted least squares routine is developed. This

chapter ends with a brief discussion of available codes that contain the

RLS algorithm.

Procedure Development

Graphical Display. In the book Understanding Robust and

Exploratory Data Analysis, Hoaglin, Mosteller, and Tukey discuss the

four themes of exploratory data analysis. These are resistance,

residuals, re-expression, and revelation (Hoaglin and others, 1983:2). It

is this revelation through the graphical display of the data that the

analyst is looking for and which should be the basis for any further

analysis. Much work and computational effort can be saved by the

prudent use of various graphical displays of the data to initially identify

suspicious trends in the data. Chatfield goes on to say, "Anyone who

tries to analyze a time series, without plotting it first, is asking for

trouble. Not only will a graph show up trend and seasonal variation, but

it also enables one to look for 'wild' observations or outliers which do not

appear to be consistent with the rest of the data" (Chatfield 1985:7).
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Figure 3. Scatter Plot of Lag of Data vs. Daily Value for Site 897

So important is the graphical display of the data in identifying

significant outliers and discovering trends, that two previously discussed

methods that are graphically based, LOESS and LOWESS, were

suggested as complimentary methods for the analysis of AFTAC's data.

By plotting the data. significant trends in the data are discovered. An

example would be the scatter plot of the data from one of the sites shown

in Figure 3. This is a scatter diagram for lag k = 1, obtained by plotting

yt versus yt-.i The plot shows that neighboring values of the time series

are correlated, with the correlation between yt and Yt-1 being positive.

The use of a scatter plot often allows the anal; st to better visualize the

data structure and identify outliers in either the x or y direction

(Rousseeuw, 1987:3). Other plots such as time series ,ilots provide

valuable information. Using a time series plot. suspected outliers as well

trends in the data can be identified.
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Further, index plots, where the standardized residual plotted

versus the index of the observation, and residual plots, where

standardized residuals are plotted versus the estimated value of the

response, are tools for spotting outlying observations. Examples of

residual plots are shown in Appendix D in the output from the

PROGRESS code. Analysts would use these plots after application of a

regression (or autoregression) fit to the data. In addition to the

identification of outliers, residual plots can provide a diagnostic tool to

gauge the goodness of fit of the model being applied (Rousseeuw,

1987:55-56).

Edward Tufte, in his book The Visual Display of Quantitative

Information, gives a revealing examph• of how important it is to

graphically display the data. Listed in Ta'ble 3 are the data Tufte

describes as Anscombe's quartet. All four of the data sets are described

by exactly the same linear model, and have identical goodness-of-fit

statistics.
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Table 3

Anscomb's Quartet (Anscombe, 1973:18)'

I II III IV
X Y X Y X Y X Y

10 8.04 10 9.14 10 7.46 8 6.583
8 6.95 8 8.14 8 6.77 8 5.76
13 7.58 13 8.74 13 12.74 8 7.71
9 8.81 9 8.77 9 7.11 8 8.84
11 8.33 11 9.26 11 7.81 8 8.47
14 9.96 14 8.1 14 8.84 8 7.04
6 7.24 6 6.13 6 6.08 8 5.25
4 4.26 4 3.1 4 5.39 19 12.5
12 10.84 12 9.13 12 8.15 8 5.56
7 4.82 7 7.26 7 6.42 8 7.91
5 5.68 5 4.74 5 5.73 8 6.89

The statistics for these data sets are identical. The mean of the X's

is 9.0 and the mean of the Y's is 7.5. The equation of the line for all four

sets is Y = 3 + 0.5X and the standard error of the estimate of the slope is

0.118. The total sum of squares _(x-1)
2 =110.0, t=4.24, the regression

sum of squares - 27.50, the residual sum of squares of Y = 13.75, the

correlation coefficient = 0.82, and R2 = 0.67. It is not until you examine

a graphical display of the data as given in Figure 4 that it becomes vividly

clear how different the data are (Tufte, 1983: 13-14). It is for exactly this

reason that the first step in the analysis of any set of data is to

graphically disp]lay it. Data analysis cannot be performed by simply

looking at the s atistics alone.
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Figure 4. Graphs of Anscomb's Quartet (Anscombe, 1973:19)

Problems with the Least Squares (LS) Regression

Various methods have been developed for fitting a straight line in

the form

Y5 = 00 +Oix• + E, (23)

to the data in the form of (xi, yi), i=I,..,,n. Here E00&, are unknown

coefficients to be estimated and E, are independent, identically

distributed (iid) normally distributed errors. Least Squares (LS)
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regression operates by minimizing the sum of the squared residuals. It

should be noted that minimizing the sum of the squared residuals also

minimizes the mean square residual. Thus. LS is really least mean of

squared residual regression. This is given as

minimize (24)
00,01 r

where

r= Y, -y, (25)

and

5, =, 00 +0,x,. (26)

The reasons for its popularity Include ease of calculation. a rather simple

mathematical derivation, and that It Is built on the Gaussian

distribution. Unfortunately. the least squares regression offeis no

resistance to outliers. In other words, It Is not robust. A single wild data

point can easily influence the fitted line and cause an erroneous

summary of the data. Figure 5 illustrates this point.
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Figure 5. (a) Original data with five points and their least squares
regression line. (b) Same data as in pai t (a), but with one outlier in the

y-direction. (Rousseeuw. 1987: 4)

Figure 5(a) illustrates a simple set of data with an LS line fit. If one

data point is bad, as in (b). the LS fit no lenger represents the data. The

LS procedure tries to fit the outlier, even though it is no longer a valid

part of the data set. For this reason, a more robust method of fitting the

data without being Influenced by outliers was necessary.
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The Least Median of Squared Residuals (LMS) Algorithm

In the previous section, the classical method of performing a linear

regression, the least squares regression, was discussed. Many have tried

to improve upon the robustness of the classical regression by replacing

"l .e square with some other quantity. One of the first attempts was made

by Edgeworth in 1887. It consisted of taking the least absolute value of

the residuals and minimizing this sum. This is given as

minnimize (27)
eoe ,.

This technique is often referred to as the LI regression, where least

squares is the L2 regression (Rousseeuw and Leroy 1987: 10). While
SJ

more robust than LS. it was found that the mean was not as robust as
the median.

Rousseeuw developed a different approach in which the sum

K [(mean) is replaced by the median of the squared residuals. In light of the

median being very robust, this method proved extremely successful.

7 This new robust estimator can handle up to 50% of the data being

contaminated (Rousseeuw 1984: 87 1-872). This least median of squared

residuals (LMS) regression, was introduced by Rousseeuw in 1984 and is

given by

60 median r,2. (28
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Rousseeuw said of LMS:

The computation of the least median of squares regression (LMS)
coefficients is not obvious at all. It is probably impossible to write
down a straightforward formula for the LMS estimator. In fact, it
appears that this computational complexity is inherent to all (known)
affine equivariant high-breakdown regression estimators, because
they are related to projection pursuit methods (Rousseeuw and Leroy
1987:197).

Rousseeuw gives a brief discussion of the Projection Pursuit (PP)

procedures in his book Robust Regression and Outlier Detection.

Rousseeuw relates this procedure to discovering the structure in a

multivariate data set by projecting these data in a lower-dimensional

space and to robust regression (Rousseeuw 1987:143-145).

LMS is however, a highly robust method for fitting a linear

regression model. For this regression, consider a true model in the form

y -0 0 + 81xi + j i =I .... n, (29)

or. for multiple variables,

P[

y, =o +•"OjXj+i'+, i=1 ..... n, (30)

where there are P explanatory variables, 6's, and the number of degrees

of freedom used in fitting.. In the case presented here, there are p

independent or predictor variables. For an arbitrary value 0, , let

ri =Yi - (60o+ixi) i = 1.....n (31)
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be the residuals, based on the responses y, and the observed explanatory

vectors x,. In the case of the time series we are examining here, x is a

single vector. For the autoregressive model, xi is the K-Value at time ti

and yi is the predicted K-Value at time ti+1. The LMS estimate E

minimizes the median of the squared residuals

rmed{r'2(0)} = med(yi - XAej) 2. (32)
i,,l,_,a 1i,,,,.

In contrast to the LMS method, the normal least squares estimate

0• minimizes the mean of the squared residuals

aVejr.2(O))) r 12( (33)

The previous section explained why the least squares estimate

lacks robustness. It was shown how a single data point consisting of the

response y, and the corresponding explanatory variable x, can cause 0e

to take on any value in p-dimensional space. This is not the case with

the LMS method. LMS still provides good statistical performance despite

- - having nearly 50 percent of the data as outliers.

Figure 5 in the previous section Illustrated the lack of robustness.

Now let's look at the effect of LMS operating on the data. Rousseeuw

gives two examples of the magnitude of the problem caused by a single
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outlier on 0,, and how a robust method such as LMS can correct this

and properly fit the line and identify the outlier. Consider two data sets;

the first with a single outlier in the y-direction, and the second with a

single outlier in the x-direction. These are in Figure 6(a) and 6(b).

LO
LO

>- rtn >. 04

LS 0 LS

-- 0 a

1 2 .3 4 5 1 2 3 4 5

X X
(C)L (b)

Figure 6. (a) Outlier in the y-direction and (b) Outlier in the x-direction
(Rousseeuw, 1987: 4-5).

Figure 6(a) illustrates the best LS fit of a scatter plot of five points

that form a somewhat straight line. However, due to a problem, either

statistical, copying error, or some other effect, the value of y, is incorrect
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and the point (x4,y4 ) is now far away from the ideal line. As is shown,

the LS fit for the data is strongly influenced by this outlier. This point is

called an outlier in the y-direction.

Another example is an outlier in the x-direction as shown in Figure

6(b). This outlier is called a leverage point. This is an analogy to the

idea of leverage in mechanics. Since xi is far from the line, the residual

from the LS fit becomes large, and contributes greatly to ES.rj2 for the fit

to that line. The effect is that the LS line is now tilted toward this

leverage point in an effort to reduce this large residual, even though it

makes the other four smaller residuals a bit larger. The effect is

dramatic (Rousseeuw 1987:5-7). This research will analyze data with

outliers in both x an y-directions.

As Figures 6(a) and 6(b) show, LMS is robust, i.e. resistant to these

* outliers. This is not true with the normal least squares regression, which

is strongly affected by the presence of outliers. This is the basis for using

a robust regression technique such as LMS to identifyr outliers in data.

The key feature of the LMS is the robustness that the high

breakdown point gives. The breakdown point is approximately 1/2 (and

indeed tends to 1/2 as the sample size becomes arbitrarily large). Recall

that the breakdown point of a regression estimate is the largest fraction

of data that may be replaced by arbitrarily large values without making

the estimate tend to infinity.
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Weighting and Least Squares

In order to improve the efficiency of the LS method, weighting is

introduced. One of the results of the LMS is a scale estimate. The scale

estimate is an estimate of the variation of the data, and is similar to the

standard deviation. For the LMS, the scale estimate is defined in a

robust way. Here it is calculated based on the value of the objective

function multiplied by a sample correction factor that is dependent on n

and p. Rousseeuw calculates the primary scale estimate using

Equation 34.

0ol426l-- r,2 (34)

With this scale estimate, the standardized residuals ri1/sQ can be

computed. The weight can now be calculated for each observation by

Equation 35.

{I ifr / Isoj< 2.5 (35)
10 otherwise

The adjusted scale estimate for the LMS is now calculated using

the weights computed in Equation 36. This adjusted scale estimate,

associated with Equation 35. is simply the conventional LS scale

estimate when the weights are all put to one.
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wir2

(36)n

Of particular importance here is that a* also possesses the same 50%

breakdown point that the LMS method exhibited (Rousseau, 1987:

44,46). This scale estimate is used in the test methodology chapter to

help determine the goodness of fit of the coefficients while the weights

are used to improve the least squares fit.

Reweighted Least Squares

Using the weights determined by the LMS, a reweighted least

squares solution for the data can be found. TIie effect of using the

weights, which can only take on a value of 1 or 0, is the same as deleting

all the data points for which wi equals zero (also referred to as trimmed

least squares by some authors). The result would be the ordinary least

squares solution if you put wi equal to one for all cases. The effect of

using t&'. weights is to operate on a reduced data set which does not

contain outliers. As a result, the statistics are more trustworthy than

those associated with the least squares performed on the entire data set

(Rousseeuw, 1987: 43-44,132). In the application of this method to the

AFTAC data, the remaining data are essentially all background points.
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Therefore, the regression, and it's standard deviation, describe only those

background points and not the outliers.

To illustrate the improvement in statistical results. Table 4 lists the

results from the data used in the PROGRESS run in Appendix D. All of

the standard ANOVA results improved, often dramatically, when stepping

from the standard LS procedure to the LMS procedure, and fine Jy ending

with the AR(1)-RLS procedure. Of importance is the improvement in the

a and R2 results for the data listed in Table 4.

Table 4

Data Results From PROGRESS Run

a R2

LS 468.58 0.38
LMS 29.29 0.69
RLS 27.74 0.73

The results in Table 4 demonstrate :iow much the reweighted least

squares, based on the weights determined from the least median of

squared residuals, improved the overall statistics. The improvement in a

. which is a measure of the variability of fitted values around the mean is

dramatic. Additionally, the R2 values improved significantly. The higher

the R2 , the better the data fit the regression equation.
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Available Codes

To test the premise that the LMS and RLS methods could

satisfactorily operate on the data sets provided by AFTAC, a version of

the LMS method was implemented using Mathematica. With this code, it

was confirmed that LMS and RLS could identify outliers in the data. The

problem with the Mathematica version was that it was extremely slow

due to the overhead of the powerful but interpreted language, as well as

the computational complexity of the method. For this reason, a search

for commercially available software that incorporated the LMS or RLS

method was conducted.

Rousseeuw stated in his preface that the code had been integrated

into the workstation package S-PLUS from Statistical Sciences, Inc. I

contacted Statistical Sciences and was able to obtain a demo copy of

their recent S-PLUS for DOS release. I was able to perform calculations

with this product, but found it too cumbersome, mainly because it does

not function in the Microsoft Windows environment.

Rousseeuw also stated in his preface that his Program for RObust

reGRESSion (PROGRESS) could be obtained directly from him. After

exchanging correspondence with Dr. Rousseeuw, he provided a copy of

the PROGRESS code (Rousseeuw, 1992). Using the PROGRESS code,

the methods developed in the next chapter are tested.
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Swrunmary

This chapter looked at the development of the method to be used

In detecting outliers. As discussed by many authors, the first step in

analyzing any set of data is to display the data graphically.

Development of the RLS process was discussed. By looking at the

weaknesses of the original least squares method, and developing the

least median of squared residuals method, significant improvement in

the detection of outliers was demonstrated. Also discussed was the

robustness of the LMS method with respect to outliers in the data set.

Additionally, the capability of the high breal~down point to improve the

method's capability to withstand up to 50% of the data being

contaminated was discussed. Finally, the RLS method was introduced.

This robust, high breakdown method was identified as the method of

choice for model development.

The chapter ended with a discussion of available codes that

Incorporate the LMS/RLS methodology for production use. In the next

chapter, the methodology to develop a procedure for identifying outliers

in a time series is discussed.
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IV. Test Methodology

Introduction

In this chapter, the test methodology used to determine the most

appropriate order of autoregression to use with the reweighted least

median squares procedure is developed. Actual data from the last 165

days of 1991 from site 889 is used in this development. I choose this

data set because of obvious significant events that are present in the

time series plot. In the iiext chapter. this methodology will then be

applied to all data sets.

The tests and methods used in this section are based on

developing models for forecasting. Many of the tests for determining

order are derived directly from those used to develop Autoregressive

Integrated Moving Average (ARIMA) models as described by Box and

Jenkins (Box and Jenkins, 1976:18). The test methodology presented

here departs from the application of the Box and Jenkins results used in

normal forecasting. This method is not trying to predict -vhat the

K-value will be on any particular day, but whether that K-value is

statistically different from other days around it.

The first step is graphically displaying the data using some

common methods employed in time series analysis. Initial

characterizations about the data are inferred from the graphical d'splays.

Following this, correlograms -- the autocorrelation and partial
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autocorrelation functions -- for the data are calculated and plotted. This

will give an initial indication of the order of autoregression (AR)

appropriate to the data. These orders of autoregression are applied to

the data and used as input to the RLS procedure in PROGRESS.

In addition to the PROGRESS runs on the data, stepwise multiple

autoregression will be performed. The results from the PROGRESS runs

and the stepwise multiple regression will then be used to select the

appropriate AR order. This final choice of AR order will then be applied

to the data set and outlier statistics calculated.

Test Data

The previous chapter demonstrated the benefits of using a

reweighted least median of squares method for fitting a line to the data.

This same method can be used for detecting outliers in time series data.

The final test of effectiveness of a method Is a measure of its performance

with actual data. In particular, any new method must be capable of

performing as a complimentary process or functioning as a replacement

procedure to the existing method.

The data to be analyzed here consist of two years of raw data from

six geographically different sites. This data represents sets which range

from a stable background with little fluctuation in the data, to extremely

noisy data with a large fluctuation in the background. Figure 7 is a time

series plot of the data from three sites that are stable, moderately noisy,

and extremely noisy.

44



/

1400 0 0#0

1 101 201 3I01 401 be,, 1 601 •0

Figure 7. Time Series Plot for Sites 858. 981. and 996

Figure 7 readily Illustrates the wide variety of data that is collected and

must be analyzed. An effective model developed should be able to span

the range of data types illustrated here.

The data used in the development of the methodology were taken

from the last 165 days of 1991 for site 889. This data set is listed in

Appendix E. This data set was chosen because of what appears to be a

smooth time series data stream with possible outliers In the data. These

outliers appear near the end of the period of Interest. The first step is to

graph the data to see whether any significant deviations appear.

T1tw Series Plots. The time series plot of the data Is given in Figure

8. Missing data are indliatc(d on the plot. This plot shows a time series

that Is relatively flat andl stationary with the exception of a few data

points that appear to be significant outliers (during the period 913:13 to
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91327. Because the magnitude of the data does not increase or decrease

relative to time, a regression technique using time as the explanatory

variable and K-Value as the response is not a useful choice. This

assertion will be Justified later in the analysis.

6

4

K-Valuq
3 Missing Data

91201 91226 91251 91276 91301 91326 91351

Date

Figure 8. Time Series Plot for Site 889 from 91201-91365

Scatter Plots. Since the model is expected to be a autoregression

model, a second way of observing the data is in a scatter plot. This is

simply a plot of the of the specified lag value versus the value of a

particular day (yjYi-). In a simple regression model, it is easy to

visualize the data structure using a scatter plot. In a general multiple

regression model with large number of explanatory variables, this would

not be possible. Figure 9 Is a scatter plot of the data.
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Figure 9. Scatter plot of Site 889 Data.

The general appearance of the scatter plot shows a tight group of

points with a slope of approximately one. The two lines drawn give a

rough estimation of the trend of the data. Points located above or below

the lines should be flagged as probable outliers. Again, since the points

appear to fall on a somewhat straight line, the scatter plot indicates that

an AR(M) regression model is appropriate. Since time cannot be used as

an explanatory variable, the only other choice is some order of

autoregression.

The origin of the term autoregressive is taken from the fact that the

equation we use to describe an autoregressive model Is exactly like a

normal regression equation. The difference is, where xt plays the role of

the explanatory variable and yt the response variable in a regression

model, now yt.1,Yt.2,etc. are the explanatory variables. Since the
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variables Yt.1,Yt.2,etc. are the same data as Yt Oust offset by one period.

two periods, etc.), Yt is actually being regressed on itself---hence the term

autoregressive (Hoff, 1983:50)

Autoregressive Order Identification

The identification stage in determining the order of regression is

the longest and most difficult. Fortunately, computers can rapidly

produce results based on the methods chosen, but often the

identification requires subjective judgment. Once the order of regression

Is Identified, there is relative certainty that the model will be able to

accurately fit the data. If the model can fit the data set, it can identify

outliers in the data set.

Identification means using the data and any Information on how

the series was generated to pick a process to begin model generation (Box

and Jenkins, 1976:171). A typical key to Identification of an AR process

lies within the patterns found in the Autocorrelation Function (ACF) and

the Partial Autocorrelation Function (PACF) (McCleary, 1980:93). The

plots of the ACF and PACF functions are commonly referred to as

correlograms. Additionally, ANOVA statistics, along with F-tests and t-

tests of the coefficients, sample standard deviations, and coefficients of

determination (R2 ), will aid considerably in the choice of the proper order

of autoregression. In particular, the overall F-test will be used to

determine whether or not all of the independent variables taken together

significantly contribute to the prediction of the dependent variable. The
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t-test is used to assess whether or not the addition of any specific

independent variable to the model significantly improves the prediction of

y, given that other variables already exist in the model.

ACF and PACF Plots. Graphical methods, such as the ACF and

PACF plots are very useful in the identification stage (Eox and Jenkins,

1976:173). Nonstationarity can be recognized by examining either the

time series plot, or more commonly, by the graph of the ACF.

For an equally spaced time series {yt:t= 1 ..... n) we use Y to

represent the sample mean. where y ) =(•y,)/n, and we define the kth

sample autocovariance coefficient,

a

9k = ,.•.(Y,- Y)(Y,-k Y n. (37)

Then the kth sample autocorrelation coefficient is

r = ---- (38)

The plot of rk against k is called the correlogram of the data.

Correlograms are often used to check for evidence of any serial

dependence in an observed time series. Values of rk greater than 2/4/n in

absolute value can be regarded as significant at about the 95% level.

More often, the correlograms are used to suggest the order for

autoregressive models. The reliability of the correlogram for this purpose

increases with the length of the time-series on which it is based. (Diggle,

1990: 39-47).
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For the majority of the AFTAC data, sufficiently short periods of

data are used in the analysis that the data can be considered stationary

even if some level of nonstationarity exists (Jenkins, 1968: 151). Hoff

writes extensively on using the ACF and PACF plots to identify the order

of autoregression. In the book A Practical Guide to BOX-JENKINS

Forecasting, Hoff gives many examples of the various types of time series

one may encounter and the order of autoregression normally applied to

that specific data series (Hoff, 1983:54-86). These examples guided the

determination of the proper order of autoregression for the AFTAC data

sets, although the patterns in the actual data are not as obvious as those

in the examples given in the literature. The expected patterns are for

infinitely long realizations (McCleary, 1980:94). All the authors suggest

that a relatively long series of data is required for time series analysis.

Box and Jenkins say at least 50 observations, and preferably over 100

observations, should be used (Box and Jenkins, 1976:18).

The autocorrelation function plot and partial autocorrelation

function plot for the Site 889 data set currently under discussion are

shown in Figures 10 and 11. The ACF and PACF plots should be viewed

together and a judgment made from both (Mykytka, 1991). In the case
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Figure 11. PACF Plot of Site 889 Data
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under study, the ACF indicates a strong correlation of the data out to lag

t jo. In this context, strong is defined as significant above the 2.5 a line.

However, when the PACF is used in conjunction with the ACF, it

indicates that the correlation is actually only good at lag 1. Other lags

show levels of significance above the 2.5 a line, but are sufficiently far

out in lags to reduce their importance to the model. The lag value at lag

8 also shows significance and bears further investigation.

It is necessary to point out that the ACF and PACF plots are just

one of many tools used to determine the best order of autoregression for

the model. This information will be combined with other results for final

formulation. This does however, give an excellent starting place "*I

identifying the order of the model.

Because the two plots are not definitive, two additional techniques

to aid in the determination of the AR order are applied. In the next case,

the results from the RLS output of PROGRESS are used to provide

statistics on which AR order to use.

Confidence Tests. The ACF and PACF results have now given a

starting point for final determination of the AR order appropriate for the

outlier detection model. The ACF and PACF plots suggest an appropriate

AR order. This is then used to test the hypothesis that the coefficients

are significantly different from zero.

To determine a confidence level in the regression coefficients, a test

based upon the ACF and PACF plots was used. Confidence intervals

based upon a Student distribution with n - p degrees of freedom are then

applied. For this test a 95% confidence interval is used. The

hypotheses are
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HO: 6j =0 (null hypothesis) (39)

HI: O, * 0 (alternative hypothesis)

This type of test can be helpful in determining if the ith coefficient

might be deleted from the model. If the null hypothesis in Equation 39 is

accepted for a certain confidence level, the ith coefficient contributes

little to the explanation of the response variable and can be removed

from the model (Rousseeuw, 1987: 40-41).

The PROGRESS code was chosen as the diagnostic tool to test the

hypothesis on the suggested coefficients. Based upon the ACF, a

regression model based upon the first, second, and eighth lags may be

appropriate. The PACF suggested that only the first and eighth are

actually significant In predicting the response variable. Using this

information, PROGRESS was run on the data set using a combination of

the lags as predictors.

Two statistics which can be used to test the validity of the model

are the F and t-tests. For the F-test, the hypotheses being tested is

whether the entire vector of regression coefficients, excluding the

constant term, equals the zero vector. This is the same as

Ho: All nonintercept 6.s ar, together equal to zero (40)
HI: Ho is not true

The t-test then determines which of the coefficients are necessary.

P-values are also computed by the PROGRESS code. The P-value

indicates the level of statistical signiicance of the hypothesis that the

predictor variable has an effect on the response variable. It is the
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Table 5

P-Values for Regression Coefficients

Variable Lag I Lags I & 2 Lags 1&8 Lagsl.2,&8

Lag 1 0.00000 0.00000 0.00000 0.00000

Lag 2 - 0.00058 - 0.00152

Lag 8 - 0.64052 0.59441

probability that the observed fit would occur as a result of random noise

in the data. Thus, a small P-value indicates that the fit is statistically

significant. An example of the calculation results is given in Appendix D

on page 100. The results are presented in Table 5.

The coefficic~it for Lag I was kept in all combinations since both

the ACF and PACF plots indicated it was significant. As Table 4 shows,

based on the P-values, the coefficient for Lag 8 is not significant at the

95% confidence level and should be eliminated from the model. In both

cases where Lag 2 was used, the P-value indicated it was significant at

the 95% confidence level.

If the calculated P-value of the associated F distribution is less

than the 95% confidence level, then H0 above can be accepted. If not, it

must be rejected (Rousseeuw, 1987:43). Unfortunately, for the cases

considered here, the P values associated with the F-test values were all
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near zero and could be considered valid. Therefore, this test provided no

additional information for this data set.

For this reason, additional confidence tests should be performed.

Another test that considers how each coefficient individually effects the

regression when combined with others is the stepwise regression.

Stepwise regression provided the final check of the model parameters.

Stepwise Multiple Regression. In addition to the specific values

given above for F-tests, stepwise multiple regression can be used to

determine which explanatory variables are significant. Stepwise multiple

regression returns only those variables with significant values for the

F-test at specified levels.

For this portion, MINITAB software performed the stepwise

multiple regression on the RLS output data. The results for Site 889 are

given in Table 6, which lists the constant term, the coefficient for each

regression term, the T-ratio for each coefficient, and the sample standard

deviation and R2 value for each step. At each step, MINITAB calculates

an F-value for each of the explanatory variables given. In the cases

evaluated, the explanatory variables were the lag values for

autoregressive order one, two, and eight as predicted by the ACF and

PA91F. If the t-test value of any explanatory variable is less than the

specified value of significance, the variable with the smallest F-test value

is removed from the model. MINITAB then calculates a new regression,

print! the results, and proceeds to the next step. Once the stepwise

regre sion reaches the point where no explanatory variables can be

added or removed from the equation, the procedure ends (Schaefer and

Farber, 1991: 261-268).
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Table 6 lists the constant, T-value, and regression coefficient for

each set of variable used. The first step of the stepwise regression

calculated the regression with all three explanatory variables in the

equation. For the second step, the T-value for the Lag 2 component was

too small and it was removed. Finally in the third step, the T-value for

the Lag 8 component was below the level of significance and was

removed, leaving only the AR(I) component.

Table 6

Stepwise Regression of Site 889
(MINITAB Output)

STEP 1 2 3
CONSTANT 600.9 581.1 625.1

lagl 0.627 0.600 0.618
T-RATIO 7.92 8 98 9.81

lag2 -0.048
T-RATIO -0.64

lag8 0.055 0.047
T-RATIO 0.92 0.80

S 470 469 469
R-SQ 38.58 38.42 38.16

While the F and t-test results were inconclusive, the results from

the stepwise regression indicated that only the AR(1) component of the

data was statistically significant in fitting the data. Based upon these

results and those of the ACF and PACF plots, an autoregression of order
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one applied to the reweighted least squares process proved to be an

adequate model of the data examined.

Diagnostic Checking. Having identified the process, the model can

now be tested. For this portion, a final run of PROGRESS used the

observed data as the response variable and a lag of one day for the

explanatory variable. As a final check to the validity of the AR(1) model

applied to the RLS procedure, the ACF of the residuals was calculated

and plotted. A good model will leave only white noise and has no

remaining pattern in the residuals. The ACF will all be insignificant

(Makridakis, 1983:446). However, at the 0.05 significance level, a

chance does exist for a few significant spikes in the ACF at dktant lags

(McCleary, 1980:99). The ACF plot for the residuals based on the AR(1)-

RLS results from PROGRESS Is shown in Figure 12.
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Figure 12. ACF Plot of Residuals from Site 889.

The ACF plot shown in Figure 12 indicates that the residuals are

essentially white with no significant spikes. This plot provides strong

evidence that the coefficients chosen ior the model are significait.

Conclusions

Using the methodology discussed in this chapter, the tests

performed indicate that an autoregressive order of one applied to the

reweighted least squares procedure provides an adequate model of the

data set examined. This data set was fit to insure that the explanatory
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variables were si•t•lfIcanit. Co,'fllcients that proved s titfiifatit were kept

while aily which were itignifiihcait were dropped.

Goodness of fit t(*,s;t, oti all ('oeflcilents deterieilrd their statistical

importallce. Additionally. IPIR)GRISS and MINITAl3 codes calculated

ANOVA type statistics for all combinations of coefficients conisidered in

the model. As a last validity check. stepwlse regression was perforerd

on the model. Finally. results of residual tests were examined to ensure

the residuals left only white noie.

On the basis of the tests performed in this chapter. I concluded

that an AR(1) method applied to reweighted least squares was an

appropriate model of the data. 1Tie next chapter discusses the resuilts of

tihe ARtl)*- RLS nwethodoloý,t as applied to five other data sets which

AI'FAC provided.
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V. Results

Th1e results of the dlata analysis using the methodology developed

in the previous chapter are discussed(Ii this chapter. Results are

reporte1d for eich of the five sites for which data was provided.

Tlhe first concluhsionus are drawn from graphical displays of the site

data. irncluding time series plots. correlograms and scatter plots. These

will be used to assist in identifying the order of autoregression

alp)ropriate for the model. in addition to the graphical displays,

confidence test results will be alalyzeId for the various coefficients of

regression. Results from the ANOVA statistics confirm that Ai(1) is the

appropriate order of autloregression for the final outlier detection model.

Followlng the d(hiculssion of model choice, the outlier results from

the AR model are discussed. These results will then be compared with

those of the RIM mid derivative methods. The main point Is not to

develop a model that will best fit data sets from one site, but to develop a

model thmt ('an adeqaivtely fit data from rny site. [low well th, 'R( 1)-RLS

model perlons in ('omJ1)rlson to the RRR anmid derivative nietlio, .J will

(CIterIln)e Its usefullnsmi to the analyst.

For eac'h of the five sites for which AIFTAC provided data. the first

3T() da•yin Ii 198. )ar analyzed. The amialysis was restricted to 300 day

1l1o'k% by the Itiput arraiy size limitations of the lRG)IOFSS code

providi•! I •1w t)I wlreeruw. In liddition to the 300 day analysis.

a ialyIi w,,•% tWcirmcI on th %u ,,ic siets of the Laita fronm Site 996 to

dleertrulic t rc ye rl;iti' cifrltiverneis of the method when emilloyed on

W1 III )t 3% s'e i o (llt II '.�I I'i



"Analysis of Graphical Displays

The first step in analyzing the data is to display the site data as

time series plots. The time series plots for sites 858, 981. and 996 were

shown previously in Figure 3. Correlograms, ACF and PACF plots, were

created for each site and are shown in Appendix E. These plots were

used to provide a first approximation of the order of autoregression to

apply to each data set. For each site, the correlograms suggested that an

order no greater than three would provide the basis for further

investigation into the final order of regression for the model. This

decision was made because only the PACF ploi from Site 858 had a

significant rk beyond lag three. Again, the idea is to try to fit a model

that supports identification of outliers from any site, not Just one specific

site.

Confldcnce Tests

As in the previous chapter, the RLS regression was used to provide

ANOVA type results on the regression-coefficients used in the model.

RLS regression was perfonied on all five sites using lags one, two, and

three as the explanatory variables. In addition to the lags, the date of

occurrence (t In the time serie;.4) was used as the explanatory variable. As

expected. time Is not a good 1predictor of future values or in identifying

outliers. These !IS results using time as the predictor are presented in

Table 7.
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Table 7

Regression Resuits Using Date as Explanatory Variable

For Site 996

Variable Coefficient Std. Err t-Value P-Value

Julian Date 0.063 0.05734 1.10158 0.27263

Constant -4301.847 5113.58900 -0.84126 0.40171

Table 7 Illustrates that the Julian date Is a poor predictor of the K-value

for that date. The P-value indicates It is not significant at the 95%

confidence level. Additionally, the t-value is not significantly different

from zero and the coefficient is extremely close to zero. These results,

along with an R2 value of 0.00904 and a P-value based on the F-test of

0.27 clearly illustrate that the Julian date should not be used as a

predictor for the K-value In this model.

The next step in the test methodology was to perform the AR(1)-

RLS regression for up to lag three for all five data sets. From this

analysis, PROGRESS calculated the R2 . a, and P-value for the F-test for

each order of regression as well as the P-values for each of the

coefficients in the regression. These results, along with the stepwise

regression to be performed later, provided the best estimate of the

autoregressive order to use in the model.

F-Test Results. The group of P-values for the F-test of regression

coefficients obtained for each site provided no conclusive results. This is
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the same problem encountered in the previous chapter. The P-values for

all combinations of coefficients for the five sites were zero. This indicated

that overall, lag one, lags one and two, or lags one, two, and three tested

equally well in predicting the response variable. This meant that the R2 ,

a, and the P-values for the individual coefficients would have to be used

to determine the order of regression.

Adjusted R2 Results. The adjusted R2 results (hereafter referred to

only as R2 ) from the AR(I)-RLS runs are shown in Figure 13. R2 . or the

coefficient of determination, is a measure of the strength of the linear

relationship between the response variable and the explanatory

var:,bles. R2 measures the proportion of total variability explained by

the regression. In the simple case with a constant term, the coefficient of

determination equals the square of the Pearson correlation coefficient

(Rousseeuw, 1987: 42). Unfortunately, the results based upon the

K
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Figure 13. R2 Results from AR(l)-RLS
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adjusted R2 were inconclusive and other factors need to be examined.

Scale Factors. The next test for goodness of fit is the scale factor

(a*). The scale factor is a robust version of the sample standard

deviation. The best model should provide the lowest scale factor for a

given site. Since the objective is to provide a model that performs best

overall, we want to minimize the scale factor over all the sites. For each

of the sites, the scale factor was calculated for each of the three lag

combination regression models. The results are shown in Figure 14.

INN0d M

J-'•La1 I •Lag1&2 • Lag1.2.&31

Figure 14. Scale Factors by Site

The results of the scale factors are as unenlightening as those of

the R2 test. Based on these results, no definitive conclusion can be

drawn between using any of the three lag combinations. Depending on

the site, the difference in scale factors ranged from 2-13%. Therefore,
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the scale factors indicate that either set of coefficients applied to the

AR(1)-RLS model appears to perform about equally.

P-Values of Coefficients. The next test for goodness of fit is to look

at the P-values of the individual coefficients. The P-values for the F-test.

which fit all of the regression coefficients together, was significant at the

95% confidence level, those for the individual coefficients indicate they

should be rejected. For sites 858 and 996, the P-values for the

coefficients for lag 2 and for lag 3 all exceeded the 5% level. This implies

these coefficients would have to be rejected at the 95% confidence level.

Stepwise Regression. The final test in determination of the

coefficients to be used in the outlief" detection model Is to perform a

stepwise regression on the coefficients. This procedure was discussed in

the previous chapter. Again, the M INITAB software performed the

stepwise regression. For each site tested, lag 2 and lag 3 were

systematically eliminated from the regression. Each case left the lag I

coefficient as the only significant coefficient in the regression model.

Conclusions of Confidence Te•ts. The final conclusion reached was

an autoregressive order one reweighted least squares model (AR(1)-RLS)

was the most appropriate model overall. While systematically adding lag

2 and lag 3 parameters to the AR(1)-RLS model gave better results at

specific sites, the lag I AR(1)-RLS model provided the best overall results

that spanned the sites. Furthermore, while the R2 test, the P-value, and

F-test proved Inconclusive individually at each of the sites, the stepwise

regression clearly indicated that lag 1 was the best choice for the model

independent of the site.
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Method Comparison

Once the order of autoregression for the AR(1)-RLS model was

determined, the test methodology was validated by comparing the

AR(I)-RLS results with those of the RRR and derivative methods. The

three models, AR(1)-RLS, RRR, and derivative, were run with 300 days of

data from each of the five sites. From these model runs, the number of

outliers found by each method was tabulated. The results are shown in

Figure 15.
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Figure 15. Number of Outliers by Method

For both the RRR and AR(I]-RLS methods. the cutoff for detecting an

outlier was set at 2.5 a•. This was done to ensure both models were

working at the same level of significance. The normnal cutoff for the RRR
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method is 3.0 a. The cutoff for the derivative method was Z 1 >5 (for the

first derivative variable) and the corresponding Z2 <-5 (for the second

derivative variable). This equates to a 95% probability that the event was

significant.

In all cases, the AR{I)-RLS method detected more outliers than the

derivative or RRR methods. In some cases, such as site 889, the

difference was dramatic. For all the site data analyzed, the AR(1)-RLS

method found all of the outliers identified by the RRR method.

The time series discussed previously in the test methodology

section was again analyzed with the AR(1)-RLS and the RRR models. The

AR(1)-RLS model used a cutoff of 2.5 a and the RRR model used both 2.5

and 3.0 a. The use of the two different a values for the RRR method is to

show that the method Is not particularly sensitive to the two different a

values. Figure 2 on page 13 illustrates the RRR method used at the 3.0

a level. The next two figures illustrate the differences in the AR(1)-RLS

and the RRR methods' capabilities to detect outliers at the 2.5 a level.
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Figure 17. K-value with AR(1)-RLS 2.5 a Line
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The most striking feature of both of the RRR plots, Figures 16 and

17, is that the significance line tends to follow the data plot, anticipating

when the k-values are going to rise. The problem here is that the RRR

method uses the data after a point, as well as that before to predict the

point. As in the case of the data presented here, the RRR method often

overlooks obvious outliers in the data. The AR(1)-RLS model however,

accurately predicts the major changes in the data. It illustrates the

capability of the method to detect the significant outliers. While the 3.0

and 2.5 a RRR methods only identified two and three outliers

respectively, the AR(1)-RLS identified ten obvious outliers. The RRR

methods only identified tie most ob,'ious and largest outlier.

Figure 18 is an enlargemenri of Figure 17. This figure more clearly

illustrates how the AR(1)-RLS method fits the data. The leading edge is

accurately identified as an outlier. but the trailing edge values are

predicted by the AR(I) model as usual return to background level. The

values for days 91320, 91322, and 91326 are high and identified as

such. However, while days 92321, 91323, and 91327 are high, they

represent the subsequent decay of the previous days large value and are

accurately accounted for by the model. The observation that they are

lower than the model predicts suggests that the days identified as,

outliers we very significant for this site. The simplicity is that AR(i)-RLS

flags these values for further consideration by the AFTAC analyst While

RRR misses them completely.
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Figure 18. Enlargement of Figure 17

Subset Analysts

The final step in the method analysis process is to study the effect

of different sizes of data sets on the detection of outliers. This study is

necessary in order to determine the optimum sample size on which to

perform the analysis.

After graphing the data, analysts are often interested in the

statistics surrounding a particular point of interest. The question arises,

is it an outlier or is it a good data point? This particular study was

performed to look at the effect of population or window sizes on the

outlier detection capability of the model.
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Three sample sets with suspected outliers were selected. For each

of these sample sets, subsets of 30, 50, 75, 100, and 300 days were

used. Each data point that appeared to be an outlier, was identified as

such in the analysis of every subset in which it occurred, regardless of

the size of the subset. Where the results varied was on days that are

very close to the threshold level of significance. That is to say, a data

point that fell just below the 2.5-a line of significance in one size subset

might be above this cutoff in another. The determining factor appears to

be the amount of noise in the data. In general, one would expect that the

larger the sample size, the larger the number of outliers the model will

detect. This was not necessarily the case here. Overall, the method was

insensitive to the sample size. However, on the basis of work by Box and

Jenkins, the minimum sample size should be 50 and preferably 100

should be used (Box and Jenkins, 1976: 18).

Summary

The autoregressive order one reweighted least squares (AR(U)-RLS)

model produced the best results over the range of the data a' ý0,. ed. The

confidence tests, Including the P-value for the individual coefficients, R2 ,

and the scale estimate each gave inconclusive results as to which

coefficients should be kept In the model. In the final analysis, the

AR(1)-RLS model was selected based upon the results of the stepwise

regression. The stepwise regression, for each of the five data sets,
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indicated that lag one was the only significant predictor, and that lags

two and three should not be used in the model.

The subset analysis performed, along with previous work by Box

and Jenkins, suggests that a large data set size is desirable. The exact

size of the data set to be used was not determined. There is no need to

seek an exact best data set size, since the identilfication of significant

outliers is very insensitive to the data set size. Data sets of 50 to 100

days (2 to 3 months) seem appropriate.
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I

ItI Itt htr•xli. ic.o RIo m 'Fdb .

Thic objerctive of tlil rreear'i was to dlevelop a mrttiodolofty to

imipIro)ve on or siiplaniit the existiig pIro'ceduire for i(lnitifi n• tignificant

outlierIs i time sc•ies (l•a. ('ompil•isn, were muiade brtwtwCe the l iie t

of the RIMR nIItthod. the derivative inethod ani(d tite a1iitOIrgsi%,r oltri

one rrw'ilh.te!tile sritlr, (Ai( I)-/.. nLS) ieho(id developrd IiI thi

A summliary, (oncliIcilons., aln reconlllerli(ation.s from this cll, lrt

are presented based on tile resuilts of the t nchlniltqeci apdlird, On the

ba1is of the work presented here, I conl('hdit(-( that the A( II) WI% i-ltlfhod

P)rovided the best outitler dlet ection mllodIel.

Obs ernm aioiis

Ba.ed principally up)On strlpWlse regression, the Al((I)- RIS (d'4il be

expectetl to be an adleuite, ainid probably Olptimial. mlod(-l for fitltiin, Ig te

full range of AFAC d(la. regardle-, of the site. (i1ie five sample data

sets were selected by AF-FAC to span this range and order one plrovi(led

the best Ali miodel for all sites)i
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Pot thett fINT %MId ;it -t% prov~ jiOVI1( by A[HIA , ARM( RU fo~ 'ihunrd v

sct of olithricis that HIM hItiiI. Thit AM~ 1) RLN ca beil) .'(prctrd( to

oI%(t Iok Iu%,() non ioil f the( m)ithcrr% tha~t R~IM cani find1

AU( 1) Il-l' iippai s to heC Iiivilnt;M% to the dlata set %I/n ~e tIS'I I

peitlotiiing',th lie ai4.vs %K ii Ik 14O cit a ry to HIMH whic 1%(1I ext remie ly

(Irpendt(Citt on th di ata xet tI/r InI (lcermh tilili g whrithter a parlictilar po IIint

ks ani m1it 11r. AdIitiml-tiallv. ARM( I N.(10,ý dcs not require two wreks (If' ia~ta

1 IC (itd t lie dJay of liltrmIV t to jIc iform1 ittS analysis, mtakling It ititl1l1 ilimiX

tIhii(V 111 fI0tC0tl11, olilt hcts

Unlid ke th tIc ienvatv lye wt hoot, AM( H ) RL-8 re~p itires mi spe al

Iterat ment of the datad to hand(l~e titssli i dat a, hiit hrnore. Ito

54ilotiOnll ote ta I% eq(iiiireo to reinove anyi no011stationarity.

fI- Ially. ARM HI)N S found four times as mtaniy outliers ats HIM found(

linthIle dlata ets.%

( of richimmis

Ther AMl I) NI-S method 1% mtore eflfective thtan the RIUI and should

rrplao e(, it. 'llic Iitcluivoi (of higher ordler lag,, i unlustifled anid the

simipllicty of A1?( 1) rmakes It an attractive method to use%, Thec AI(I)RMAS

muethod0( developed 11(1e Cis suiccessf ii in locating aill ouutiers identifled by

the HJUR method asi well it.% many others that the NRI method overlooks.

Additioinally. the AR( I-NIS muethod0( will iIdentify not-so-obvious outliers

that hear finflirr Invest igat ion by the analyst to (Irtmuhitic their

importance.
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lin addition to the ohidotu% outliers that the AR( I)-RI... method

detects, it does an excellent job at explaining why some data points.

which appear to be outliers. are not outliers. By correctly fittilig the

data, a stccessive othtlier Is identified as a relic of the previouIs

fluctuation an(d is riot itself significant.

Recom~n r Wadho~ris

hi order for this method to receive full acceptance by AFIAC. It will

be necessary to modify Dr. Rousiseeuw's PROGRI•SS code. The most

important modification, and perhaps the only one absolutely necessary.

Is chanlging the a cutoffvalue from a fixed 2.5 to an input variable. This

will allow the I'ROGRIESS code to operate at the same level of significance

as AFTAC's recursive removal with, -it regression method.

There are several other possib, ties to Improve upon the work

presented in this thesis, the first of which is the addition of a spatial

parameter to try to incorporate meteorologic.- effects seen over

geographically close sites. Consideration should be given to future

imlprovements such as coupled space and t ne modeling for

geographically related sampling sites.

75



ApIlendix A: Recurstive Rejection wvithout Regression BASIC Code

Tihis appendix contains the BASIC code for ATAC's recursive

rejection without regression (RRR) method. Tihis code was adapted from

the PL/ I version of the code provided to me by AFT'AC. The code was

used to produce the RRR results discussed in Chapters IV and V.

RRR program

* this program takes the value data and performs a Recursive Rejection

* without Regression (RRR) on the data points. This is the method

currently In place at AFTAC/TNR. Code adapted from PL/I code

provided

* by AFrAC/TNR in November 1992.

ver$ - "RRR.bas, Version 1. written by Capt Keri L. Robinson. GNE93M.

8 Dec 92"

CLS

DEFINT 1. L-N

TYPE file

fliename AS ST rING 40

END TYPE

DIM Inflie AS file

DIM outfile AS file
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DIM tempflle AS file

/

INPUT "Enter the name of the data file Including path: "; infile.filename

OPEN infile.filename FOR INPUT AS #1

INPUT "Enter the name of the output file Including path: ";

outfile.filename

OPEN outflle.filename FOR OUTPUT AS #3

reading In data file for the number of records

i=0

DO

n=n+ 1

INPUT # 1, aa. bb

LOOP UNTIL (EOF(l))

CLOSE (1)

PRINT 'This file contains "; n; "records."

REDIM a(l TO 30) '30 day array

REDIM value(I TO n) 'daily value

REDIM Jdate( 1 TO n) 'Julian data of data

REDIM sd(l TO n) 'daily standard deviation above background
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REDIM sigout(I TO n) AS STRING 'mark the status of the da' ,oint

REDIM smean({1 TO n) 'calculated background value

REDIM drop(1 TO n) number dropped from each window calcu. ition

REDIM dropped%( 1 TO 30)

CONST False = 0

CONST True = NOT False

OPEN infile.fllename FOR INPUT AS #1

FOR in= 1TO n

INPUT # 1. Jdate~in), value(in)

NEXT in

CLOSE (1)

FOR in= 15TOn- 15

npts = 0

sum = 0

sum2 = 0

1=0

sigma = 3

IF value(in) -:> 0 THEN

FOR htIn- 14TOin+ 15

S=1+1

a(i) = value(ia)

NEXT ia
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i=O

DO

1-1+1

a - a(i)

dropped%(i) " False

IF a <> 0 THEN

sum = sum + a

sum2 = sum2 + a * a

npts = npts + 1

END IF

LOOP UNTIL I =30

amean = sum / npts

sdev = SQR((sum2 - (sum A 2 / npts)) / (npts - 1))

numptsdrp = 0

drp= 0

DO

numptsdrp = drp

drp = 0

I=0

DO

i=i+1

a = a(l)

IF a <> 0 THEN

IF ABS((a - amean) / sdev) > sigma AND

dropped%(i) - False THEN

sum sum - a
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suxn2 =sum2 - (a *a)

npts = npts - 1

drp = drp + 1

dropped%(i) = True

ELSEIF dropped%(i) =True THEN

drp = drp + 1

END IF

ELSE

drp = drp + 1

END IF

LOOP UNTIL I = 30

sdlev = 0

sdlev = SQR('tsum2 - (SUM A2 /npts)) /(npts - 1))

amean = sum / npts

LOOP UNTIL numptsdrp = drp OR drp > 15 'OR npts < 15

sd(in) = (value(in) - amean) / sdlev

smeanfin) = amean

drop(in) = drp

'PRINTjidate(in). value(in), smean(in), sd(in)

IF sd(in) > sigma THEN

sigout(in) ="" 'Specifies the value as an outlier

ELSEIF sd(in) < sigma THEN

sigout~in) = "0" 'Specifies the values is a good data point

END IF

EL.SEIF value(in) 0 THEN
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sigout(in) = "-" 'Specifies the value not used in

calculations

END IF

NEXT in

FOR in= ITOn

PRINT #3. jdate(in), value(in), USING "#####.# ";smean(in);

PRINT #3, USING "####. "; sd(in);

PRINT #3, sigout(in). dropfin)

NEXT in

CLOSE (1)

CLOSE (3)

END
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Appendix B: Derivative Method BASIC Code

This appendix contains the BASIC version of the derivative method

written by Dr. Lloyd Currie. The code was adapted from the FORTRAN

version provided by AFTAC. The results of this code are discussed in

Chapters IV and V.

DECLARE SUB NormalStdDev (sampavg!0, j!, ndays%, sigma!O, stddev!O)

DECLARE SUB Interp (samp!{}. n%)

DECLARE SUB average (samp!0. sampavg!O. n%)

program currie

' this program takes the sample data and performs the currie

' algorithm on the data. This is a modification of the FORTRAN version

* of the currie code provided by AFTAC.

ver$ = "Currie.bas, Version 1, written by Capt Keri L. Robinson,

GNE93M, I Oct 92"

CLEAR

DEFINT I. L-N

TYPE file

filename AS STRING * 40

END TYPE
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DIM infile AS file

DIM outflle AS file

DIM tempfile AS file

INPUT "Enter the name of the data file including path: "; infile.filename

OPEN infile.fllename FOR INPUT AS # 1

INPUT "Enter the name of the output file Including path: ";

outfile.filename

OPEN "d: \tmp\temp.out" FOR OUTPUT AS #3

reading in data file for the number of records

n-0

i=0

DO

n-n+ I

INPUT #1, a. b

LOOP UNTIL (EOF(1))

CLOSE (1)

PRINT "'This file contains "; n, " records."

REDIM samp(l TO n) 'Raw data
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REDIM sampavg(1 TO n) Three day averaged data (smoothed)

REDIM dif3(0 TO n) 'First difference of smoothed data

REDIM dlf33(l TO n) 'Second difference of smoothed data

REDIM zfacl(1 TO n) 'Z-Factor of the first difference

REDIM zfac2(l TO n) Z-Factor of the second difference

REDIM jdate(1 TO n) 'Julian data of data

OPEN infile.filename FOR INPUT AS # 1

FOR in = 1 TO n

INPUT # 1, jdate(in), samp(in)

NEXT in

CLCSE (1)

* data check and interpolating missing values up to 2 days

CALL Interp(sampO, n)

* calculating the 3 day moving average

CALL average(sampO. sampavgO, n)

calculating the first divided difference

' This is an attempt at an unbiased first derivative by using points

* in the numerical approximation to the derivative at a point which
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were not used in calculating sanpavg. sampavg(i) is a function of (i-

1.i,i+1),

so to do the first difference unbiased, you must go to sampavg(i-3) for

backward difference in order not to use points used in sampavg(i)

* This all assumes that no data are missing

FORi=5TOn- I

IF ((sampavg(i 3) <> 01) AND (sanipavgti) <> 0!)) THEN

dif3(i) = - sarIpavt(i - 3)

END IF

NEXT

* calculating the second difference

' the method of using unbiased data applies here. but the method used

for

the second difference is works out to be

8 sampavg(i)"=sampavg(i+3)-2*sampavg(i)+sarnpavg(i-3)

FORI 5TOn- 4

IF (dif3(! + 3) <> 0! AND dif3(1) <>-0!)-THEN

dif33(i) = dif3(i + 3) - dif'3(i)

END IF

NEXT

' calculating sigma for dif3 and difZ33
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* here rbar is the range between the two values calculated above. This

* is used later to approximate sigma for the group of data of interest.

* This method is fully described in Thomas P. Ryans book "Statistical

Methods for Qua!ity Improvement" pp 82-86.

DO

INPUT "How many days do you want in the window? (min 20)",

ndays

LOOP UNTIL ndays >= 20

ndays = INT(ndays / 2)

OPEN outfile.filename FOR OUTPUT AS #2

FORj = (ndays + 2) TO (n - ndays) 'Needed to have sufficient days in the

i loop

rbarl = 0!

rbar2 = 0!

numi = 0

num2 = 0

FOR i = j -- ndays TO j + ndays 'using a nday moving average

IF ((dif3(i - 1) <> 0!) AND (dif3(i) <> 0!)) THEN

rbarl = ABS(dif3(i - 1) - dif3(i)) + rbarl

numl =numl + 1

END IF

IF W(dif33(i - 1) <> 0! AND (dif.33(i) <> 0!) THEN
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rbar2 ABS(dif33(i - 1) - dif33(i)) + rbar2

num2 num2 + I

END IF

NEXT i

REDIM slgma(l TO j)

REDIM stddev(l TO j)

CALL NormalStdDev(sampavgo, J, ndays, sigmaO, stddevf)

' PRINT #2, jdateo), stddevj)

* Calculate sigma for the first and second differente.

* The number 1.128 comes from a table constructed to allow the

average

* of the ranges to be divided by this constant so that the resultant

' number is an unbiased estimator of sigma. This is from Table E, pg

434

* of Ryans book.

IF num 1 = 0 THEN 'check for no data is calculation

sigmal = -1

ELSE

sigmal = rbarl / (1.128 (num 1))

END IF

IF num2 = 0 THEN 'check f r no data is calculation

sigma2 = -1I

ELSE

sigma2 = rbar2 / (1.128 (num2))
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END IF

PRINT #3, rbarl, sigmal, rbar2, sigma2

* calculating zfactors for both dif3 and dif33

* The Z-factor or Z-score calculated below is a probability that a value

* is outside a range defined by a normal distribution. Z-scores

represent

* the area under a normal curve from the mean to a pont on the curve.

* This assumes the value we want to compare to, mu, is zero. The

* Z-score calculated here is (average-mu)/sigma. The differences are

our

average, and the estimated sigma is calculated above.

IF numl < 15 OR sigmal = -1 THEN 'signifies not enough data

for good

zfac 1 a) = -1 'statistics

ELSE

zfacl(j) = dif3(j) / sigmal

END IF

IF num2 < 15 OR sigma2 = -1 THEN

zfac2 J) = -1

ELSE

zfac2(j) = dif33j) I sigma2
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END IF

NEXTJ

printing output

PRINT #2, 'Thbe following is based on an". ndlays *2; "day moving

whicdow"

PRINT #2,

PRINT #2, "Date Sample AVG3 DIF3 DIF33 ZFAC 1

ZFAC2"

FOR I= 1 TO n

PRINT #2, USING "##### ";jdate(l);

PRINT #2. USING "#####.## ";sanip(i); sampayg(i);

PRINT #2. USING "####.### ";dif3(i); dif33(i);

PRINT #2. USING "###.#### ";zfacl(i); zfac2(i)

NEXT i

CLOSE (2)

CLOSE (3)

END

SUB average (sampO, sampavgO, n)
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FORi =2TO n- I

IF ((samp(i - 1) <> 0!) AND (samp(i + 1) <> 0! AND (samp(i) <> 0!)

THEN

sampavg(i) = (samp(i - 1) + samp(i) + samp(i + 1)) / 3!

END IF

NEXT

END SUB

SUB interp (samp0. n)

data check and interpolating missing values up to 2 days

FORI = 2TO n- 2

IF (samp(i) = 0! AND samp(i + 1) = 0! AND samp(i + 2) = 0!) THEN

samp(i) = 0!

samp(i + 1) = 0!

samp(i + 2) = 0!

ELSEIF (samp(i - 1) = 0! AND samp(l) = 0!) THEN

samp(i) = 0!

ELSEIF (samp(i) = 0! AND samp(i + 1) = 0!) THEN

samp(i) = (samp(i - 1) * 2! + samp(i + 2)) / 3!

samp(i + 1) = (samp(i - 1) + samp(i + 2) * 2!) / 3!

ELSEIF (samp(i) = 0!) THEN

Ssamp(i) = (samp(i - 1) + samp(i.+ 1)) / 2!

END IF

NEXT i
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END SUB

SUB NormalStdDev (sampavgO, J, ndays. sigmaO, stddevO)

sampsqr = 0

samptot = 0

npts - 0

FOR ij = (- ndays) TO (j + ndays)

IF sampavg(ij) <> 0 THEN

sampsqr = sampsqr + (sampavg(ij)) A 2

samptot = samptot + sampavg(ij)

npts - npts + 1

END IF

NEXT Ij
'calculate the sigma for the window

IF npts < 15 THEN 'min pts to be used in a sigma calculation

sigmao) = 0

ELSE

sigma(j) = SQR((sampsqr - (samptot A 2 / npts)) / (npts - 1))

bkg = samptot / npts

stddevo) = (sampavg(j) - bkg) / sigmao)

END IF

'PRINT '"The value is "; stddev(j); "outside the normal background."

END SUB
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Append L C: Data Listing for PROGRESS Run in AppendLx D

This appendix contains a listing of the data used in the Test

Methodology chapter of the thesis. This data was used as input for the

PROGRESS code output in Appendix D.

Julian K-Value Lag 1 Lag 2 Lag 3

Date

91201 1528.8 1543.5 1483.5 1420.8

91202 1473.8 1528.8 1543.5 1483.5

91203 1422.7 1473.8 1528.8 1543.5

91204 1389.9 1422.7 1473.8 1528.8

91205 1382 1389.9 1422.7 1473.8

91206 1406.2 1382 1389.9 1422.7

91207 1384.5 1406.2 1382 1389.9

91208 1445.8 1384.5 1406.2 1382

91209 1411.2 1445.8 1384.5 1406.2

91210 1383 1411.2 1445.8 1384.5

91211 1372.5 1383 1411.2 1445.8

91212 1369.7 1372.5 1383 1411.2

91213 1374.6 1369.7 1372.5 1383

91214 1436.5 1374.6 1369.7 1372.5

91215 1399.3 1436.5 1374.6 1369.7

91216 0 1399.3 1436.5 1374.6

91217 0 0 1399.3 1436.5
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Julian K-Value Lag 1 Lag 2 Lag 3

Date

91218 1421.7 0 0 1399.3

91219 1421.9 1421.7 0 0

91220 1422.7 1421.9 1421.7 0

91221 1427 1422.7 1421.9 1421.7

91222 1436 1427 1422.7 1421.9

91223 1440.2 1436 1427 1422.7

91224 1450.9 1440.2 1436 1427

91225 1463 1450.9 1440.2 1436

91226 1473.9 1463 1450.9 1440.2

91227 1506.9 1473.9 1463 1450.9

91228 1526 1506.9 1473.9 1463

91229 1517.3 1526 1506.9 1473.9

91230 1491.7 1517.3 1526 1506.9

91231 1429.5 1491.7 1517.3 1526

91232 1402.2 1429.5 1491.7 1517.3

-91233 1383 1402.3 1429.5- 1491.7 ---

91234 1393.9 1383 1402.3 1429.5

91235 1398.1 1393.9 1383 1402.3

91236 1488 1398.1 1393.9 1383

91237 1555.6 1488 1398.1 1393.9

91238 1525.2 1555.6 1488 1398.1

91239 1614.3 1525.2 1555.6 1488

91240 1613.2 1614.3 1525.2 1555.6
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Julian K-Value Lag 1 Lag 2 Lag 3

Date

91241 1579 1613.2 1614.3 1525.2

91242 1358.9 1579 1613.2 1614.3

91243 1411.8 1358.9 1579 1613.2

91244 1479 1411.8 1358.9 1579

91245 1508.8 1479 1411.8 1358.9

91246 1461.7 1508.8 1479 1411.8

91247 1474.8 1461.7 1508.8 1479

91248 1460.1 1474.8 1461.7 1508.8

91249 1490.5 1460.1 1474.8 1461.7

91250 1448 1490.5 1460.1 1474.8

91251 1422.5 1448 1490.5 1460.1

91252 1412.7 1422.5 1448 1490.5

91253 1467.3 1412.7 1422.5 1448

91254 1497.2 1467.3 1412.7 1422.5

91255 1506.3 1497.2 1467.3 1412.7

91256 1547.3 1506.3 1497.2 1467.3

91257 1429.1 1547.3 1506.3 1497.2

91258 1512.3 1429.1 1547.3 1506.3

91259 1530.2 1512.3 1429.1 1547.3

91260 1529.8 1530.2 1512.3 1429.1

91261 1516.5 1529.8 1530.2 1512.3

91262 1422.4 1516.5 1529.8 1530.2

91263 1495.4 1422.4 1516.5 1529.8
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Julian K-V7alue Lag 1 Lag 2 Lag 3

Date

91264 1500.6 1495.4 1422.4 1516.5

91265 1488.6 1500.6 1495.4 1422.4

91266 1516.3 1488.6 1500.6 1495.4

91267 1512.5 1516.3 1488.6 1500.6

9 1268 1505 1512.5 1516.3 1488.6

91269 1497.7 1505 1512.5 1516.3

91270 1436.1 1497.7 1505 1512.5

91271 1457.2 1436.1 1497.7- 1505

91272 1556.6 1457.2 1436.1 1497.7

91273 1546.6 1556.6 1457.2 1436.1

91274 1508.9 1546.6 1556.6 1457.2

91275 1478.5 1508.9 1546.6 1556.6

91276 1481 1478.5 1508.9 1546.6

91277 1462.8 1481 1478.5 1508.9

91278 1520.5 1462.8 1481 1478.5

91279 1532.2 1520.5 1462.8 1481

91280 1500.1 1532.2 1520.5 1462.8

91281 1493.6 1500.1' 1532.2 1520.5

91282 1481.5 1493.6 1500.1 1532.2

91283 1501.5 1481.5 1493.6 1500.1

91284 1521.4 1501.5 1481.5 1493.6

91285 1467 1521.4 1501.5 1481.5

91286 1466.1 1467 1521.4 1501.5
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Julian K-Value Lag 1 Lag 2 Lag 3

Date

91287 1480.6 1466.1 1467 1521.4

91288 1544.1 1480.6 1466.1 14677

91289 1543.5 1544.1 1480.6 1466.1

91290 1539.9 1543.5 1544.1 1480.6

91291 1490.5 1539.9 1543.5 1544.1

91292 1495.5 1490.5 1539.9 1543.5

91293 1560.1 1495.5 1490.5 1539.9

91294 1559.4 1560.1 1495.5 1490.5

91295 1548.5 1559.4 1560.1 1495.5

91296 1584.7 1548.5 1559.4 1560.1

91297 1608.6 1584.7 1548.5 1559..4

91298 1624.5 1608.6 1584.7 1ý48.5

91299 0 1624.5 1608.6 1584.7

91300 1524.6 0 1624.5 1608.6

91301 1535 1524.6 0 1624.5

91302 1521.4 1535 1524.6 0

91303 1513.2 1521.4 1535 1524.6

91304 1569.7 1513.2 1521.4 1535

91305 1555.6 1569.7 1513.2 1521.4

91306 1512.3 1555.6 1569.7 1513.2

91307 1499.6 1512.3 1555.6 1569.7

91308 1521.4 1499.6 1512.3 1555.6

91309 1543.2 1521.4 1499.6 1512.3
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Julian K-Va2.ue Lag 1 Lag 2 Lag 3

Date

91310 1538.4 1543.2 1521.4 1499,.6

91311 1511.5 1538.4 1543.'2 1521.4

91312 1503 1511.5 1538.4 1543.2

91313 3735.5 1503 3511.5 1538.4

91314 .5655.4 3735.5 1503 1511.5

91315 4450.3 5655.4 3735.5 1503

91316 ý2827 4450.3 5655.4 3735.5

91317 1667.7 2827 4490.3 5655.4

91318 1576.1 1667.7 2827 4450.3

91319 1587 1576.1 1667.7 2827

91320 4287.1 1587 1576.1 1667.7

91321 2072 4287.1 1587 1576.1

91322 4156.3 2072 4287.1 1587

91323 2898.6 4156.3 2072 4287.1

91324 1513.8 2898.6 4156.3 2072

91325 1805.6 1513.8 2898.6 4156.3

91326 3933.3 1805.6 1513.8 2898.6

91327 2806.1 3933.3 1805.6 1513.8

91328 1545.6' 2806.1 3933.3 1805.6

91329 1516.7 1545.6 2806.1 3933.3

91330 1521.5 1516.7 1545.6 2806.1

91331 1504.5 1521.5 1516.7 1545.6

91332. 1627.5 1504.5 1521.5 1516.7

97



Julian K--Value Lag 1 Lag 2 Lag 3

Date

91333 1475 1627.5 1504.5 1521.5

91334 1460 1475 1627.5 1504.5

91335 1463.4 1460 1475 1627.5

91336 1465.3 1463.4 1460 1475

91337 1493.2 1465.3 1463.4 1460

91338 1472.7 1493.2 1465.3 1463.4

91339 1493.7 1472.7 1493.2 1465.3

91340 1482.7 1493.7 1472.7 1493.2

91341 2023.8 1482.7 1493.7 1472.7

91342 1623.4 2023.6 1482.7 1493.7

91.343 1527.9 1623.4 2023.8 1482.7

91344 1515.4 1527.9 1623.4 2023.8

91345 1485.1 1515.4 1527.9 1623.4

91346 1527.8 1485.1 1515.4 1527.9

91347 1527 1527.8 1485.1 1515.4

91348 1520.2 1527 1527.8 1485.1

91349 1510 1520.2 1527 1527.8

91350 1484.7 1510 1520.2 1527

91351 1478.8 1484.7 1510 1520.2

91352 1503.8 1478.8 1484.7 1510

91353 1516 1503.8 1478.8 1484.7

91354 1495.5 1516 1503.8 1478.8

91355 1489.6 1495.5 1516 1503.8
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Julian K-Value Lag 1 Lag 2 Lag 3

Date

91356 1488.2 1489.6 1495.5 1516

91357 1480.6 1488.2 1489.6 1495.5

91358 1463.1 1480.6 1488.2 1489.6

91359 0 1463.1 1480.6 1488.2

91360 1507.1 0 1463.1 1480.6

91361 1506.5 1507.1 0 1463.1

9)362 1522.6 1506.5 1507.1 0

91363 1534.8 1522.6 1506.5 1507.1

91364 1488 1534.8 1522.6 1506.5

91365 1483 1488 1534.8 1522.6
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AppendLx D: Sample Output from PROGRESS Code

This appendix contains the output from the PROGRESS code

provided by Dr. Rousseeuw. The input data are listed in Appendix C.

This output is discussed in the Test Methodology Chapter.

*PROGRESS *

This program performs a robust regression analysis based on
the least median of squares (LMS) method as described in

P. Rousseeuw (1984), Least Median of Squares Regression,
Journal of the American Statistical Association, 79, 871-880.

A user manual to this program is the book:
P. Rousseeuw and A. Leroy (1987), Robust Regression
and Outlier Detection, Wiley, New York.

DATA SET - DAYS 91251-91365 OF 889 YR 1991 USING KVALUE AND LAG ONE

REGRESSION WITH A CONSTANT TERM.

NUMBER OF CASES - 165
NUMBER OF COEFFICIENTS (INCLUDING CONSTANT TERM) 2

THE EXTENSIVE SEARCH VERSION WILL BE USED.

TREATMENT OF MISSING VALUES IN OPTION 1: THIS MEANS THAT A CASE WITH A
MISSING VALUE FOR AT LEAST ONE VARIABLE WILL BE DELETED.

LARGE OUTPUT IS WANTED.

YOUR DATA RESIDE IN !ILE : 201_365.DAT

VARIABLE LAG1 VALUE HAS A MISSING VALUE FOR 4 CASES.
VARIABLE KVALUE HAS A MISSING VALUE FOR 4 CASES.

CASE HAS A MISSING VALUE FOR VARIABLES (VARIABLE NUMBER 3 IS THE
RESPONSE)

16 3
17 1 3
18 1
99 3

100 1

100



159 3
1601

THERE ARE 158 CASES STAYING IN THE ANALYSIS.

THE OBSERVATIONS, AFTER TREATMENT OF MISSING VALUES ARE:

LAG1 VALUE KVALUE
1 1543.5000 1528.8000
2 1528.8000 1473.8000
3 1473.8000 1422.7000
4 1422.7000 1389.9000
5 1389.9000 1382.0000
6 1382.0000 1406.2000
7 1406.2000 1384.5000

8 1384.5000 1445.8000
9 1445.8000 1411.2000

10 1411..2000 1381.0000
11 1383.0000 1372.5000
12 1372.5000 1369.7000
13 1369.7000 1374.6000
14 1374.6000 1436.5000
15 1436.5000 1399.3000
19 1421.7000 1421.9000
20 1421.9000 1422.7000
21 1422.7000 1427.0000.
22 1427.0000 1436.0000
23 1436.0000 1440.2000
24 1440.2000 1450.9000
25 1450.9000 1463.0000
26 1463.0000 1473.9000
27 1473.9000 1506.9000
28 1506.9000 1526.0000
29 1526.0000 1517.3000
30 1517.3000 1491.7000
31 1491.7000 1429.5000
32 1429.5000 1402.3000
33 1402.3000 1383.0000
34 1383.0000 1393.9000
35 1393.9000 1398.1000
36 1398.1000 1488.0000
37 1488.0000 1555.6000
38 1555.6000 1525.2000
39 1525.2000 1614.3000
40 1614.3000 1613.2000
41 1613.2000 1579.0000
42 1579.0000 1358.9000
943 1358.9000 1411.8000

44 1411.8000 1479.0000
45 1479.0000 1508.8000
46 1508.8000 1461.7000
47 1461.7000 1474.8000
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48 1474.8000 1460.1000
49 1460.1000 1490.5000
50 1490.5000 1448.0000
51 1448.0000 1422.5000
52 1422.5000 1412.7000
53 1412.7000 1467.3000
54 1467.3000 1497.2000
55 1497.2000 1506.3000
56 1506.3000 1547.3000
57 1547.3000 1429.1000
58 1429.1000 1512.3000
59 1512.3000 1530.2000
60 1530.2000 1529.8000
61 1529.8000 1516.5000
62 1516.5000 1422.4000
63 1422.4000 1495.4000
64 1495.4000 1500.6000
65 1500.6000 1488.6000
66 1488.6000 1516.3000
67 1516.3000 1512.5000
68 1512.5000 1505.0000
69 1505A0000 1497.7000
70 1497.7000 1436.1000
71 1436.1000 1457.2000
72 1457.2000 1556.6000
73 1556.6000 1546.6000
74 1546.6000 1508.9000
75 1508.9000 1478.5000
76 1478.5000 1481.0000
77 1481.0000 1462.8000
78, 1462.8000 1520.5000
79 1520.5000 1532.2000
80 1532.2000 1500.1000
81 1500.1000 1493.6000
82 1493.6000- 1481.5000
83 1481.5000 1501.5000
84 1501.5000 1521.4000
85 1521.4000 1467.0000
86 1467.0000 1466.1000
87 1466.1000 1480.6000
88 1480.6000 1544.1000
89 1544.1000 1543.5000
90 1543.5000 1539.9000
91 1539.9000 1490.5000
92 1490.5000 1495.5000
93 1495.5000 1560.1000
94 1560.1000 1559.4000
95 1559.4000 1548.5000
96 1548.5000 1584.7000
97 1584.7000 1608.6000
98 1608.6000 1624.5000

101 1524.6000 1535.0000
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102 1535.0000 1521.4000
103 1521.4000 1513.2000
104 1513.2000 1569.7000
105 1569.7000 1555.6000
106 1555.6000 1512.3000
107 1512.3000 1499.6000
108 1499.6000 1521.4000
109 1521.4000 1543.2000
110 1543.2000 1538.4000
111 1538.4000 1511.5000
112 1511.5000 1503.0000
113 1503.0000 3735.5000
114 3735.5000 5655.4000
115 5655.4000 4450.3000
116 4450.3000 2827.0000
117 2827.0000 1667.7000
118 1667.7000 1576.1000

19 1576.1000 1587.0000
120 1587.0000 4287.1000
121 4287.1000 2072.0000
122 2072.0000 4156.3000
123 4156.3000 2898.6000
124 2898.6000 1513.8000
125 1513.8000 1805.6000
126 1805.6000 3933.3000
127 3933.3000 2806.1000
128 2806.1000 1545.6000
129 1545.6000 1516.7000
130 1516.7000 1521.5000
131 1521.5000 1504.5000
132 1504.5000 1627. 5000
133 1627.5000 1475.0000
134 1475.0000 1460.0000
135 1460.0000 1463.4000
136 1463.4000 1465.3000
137 1465.3000 1493.2000
138 1493.2000 1472.7000
139 1472.7000 1493.7000
140 1493.7000 1482.7000
141 1482.7000 2023.8000
142 2023.8000 1623.4000
143 1623.4000 1527.9000
144 1527.9000 1515.4000
145 1515.4000 1485.1000
146 1485.1000 1527.8000
147 1527.8000 1527.0000
148 1527.0000 1520.2000
149 1520.2000 1510.0000
150 1510.0000 1484.7000
151 1484.7000 1478.8000
152 1478.8000 1503.8000
153 1503.8000 1516.0000
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-7 77--S 7-777 V

154 1516.0000 1495.5000
155 1495.5000 1489.6000
156 1489.6000 1488.2000
157 1488.2000 1480.6000
158 1480.6000 1463.1C00
161 1507.1000 1506.5000
162 1506.5000 1522.6000
163 1522.6000 1534.8000
164 1534.8000 1488.0000
165 1488.0000 1483.OOCO
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DAYS 91251-91365 OF 889 YR 1991 USING KVALUE AND LAG ONE

OBSERVED

KVALUE I +------- -- - -- -- -- - -- ---- --- -- -- - -- --

r I

.1595E+04 + 1 +

I I

I- - - - - - - - - - - - - - - - - - I - - - - - - - - -I

DOBSERVED USI VALUEA

I i

I I

I I

1 .1

I I I

I I

I I

4 1 4

I 1I

I I

I I

II •I

I I

I I

I 1I

I I

I I

I I

II I

4 +

I I

I I

11 I'

+ +

I 5' 1

I 1 1 I

I I

.1 IEO 261 +

I I

* 1359E+04 .5655E+04

OBSERVED LAGi VALUE
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MEDIANS -

LAG1 VALUE KVALUE
1503.4000 1501.0500

DISPERSIONS =

LAG1 VALUE KVALUE
53.7442 52.4100

THE STANDARDIZED OBSERVATIONS ARE:

LAG1 VALUE KVALUE
1 .7461 .5295
2 .4726 -. 5199

3 -. 5508 -1.4949
4 -1.5016 -2.1208
5 -2.1119 -2.2715
6 -2.2588 -1.8098
7 -1.8086 -2.2238
8 -2.2123 -1.0542
9 -1.0717 -1.7144

10 -1.7155 -2.2524
11 -2.2402 -2.4528
12 -2.4356 -2.5062
13 -2.4877 -2.4127
14 -2.3965 -1.2316
15 -1.2448 -1.9414
19 -1.5202 -1.5102
20 -1.5164 -1.4949
21 -1.5016 -1.4129
22 -1.4215 -1.2412
23 -1.2541 -1.1610
24 -1.1759 -. 9569
25 -. 9768 -. 7260

26 -. 7517 -. 5180

27 -. 5489 .1116
28 .0651 .4761
29 .4205 .3101
30 .2586 -. 1784
31 -. 2177 -1.3652
32 -1.3750 -1.8842
33 -1.8811 -2.2524
34 -2.2402 -2.0445
35 -2.0374 -1.9643
36 -1.9593 -. 2490
37 -. 2865 1.0408
38 .9713 .4608
39 .4056 2.1608
40 2.0635 2.1399
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41 2.0430 1.4873
42 1.4067 -2.7123
43 -2.6887 -1.702ý
44 -1.7044 -. 4207
45 -. 4540 .1479
46 .1005 -. 7508
47 - .7759 -. 5009
48 -. 5321 -. 7813
49 -. 8057 - .2013
50 -. 2400 -1.0122
51 -1.0308 -1.4988
52 -1.5053 -1.6858
53 -1.6876 -. 6440
54 -. 6717 - .0735
55 -. 1154 .1002
56 .0540 .8825
57 .8168 -1.3728
58 -1.3825 .2147
59 .1656 .5562
60 .4987 .5486
61 .4912 .2948
62 .2437 -1.5007
63 -1.5071 -. 1078
64 -. 1489 - .0036
65 - .0521 - .2376
66 -. 2754 .2910
67 .2400 .2185
68 .1693 .0754
69 .0298 -. 0639
70 -. 1061 -1.2393
71 -1.2522 -. 8367
72 -. 8596 1.0599
73 .9899 .8691
74 .8038 .1498
75 .1023 -. 4303
76 -. 4633 -. 3826
77 -. 4168 -. 7298
78 -. 7554 .3711
79 .3182 .. 4
80 .5359 -. 0181
81 - .0614 -. 1421
82 -. 1823 - .3730
83 -. 4075 .0086
84 -. 0354 .3883
85 .3349 -. 6497
.86 -. 6773 -. 6669
87 -. 6940 - .3902
88 -. 4242 .8214
89 .7573 .8100
90 .7461 .7413
91 .6791 -. 2013
92 -. 2400 - .1059
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93 -. 1470 1.1267
94 1.0550 1.1133
95 1.0420 .9054
96 .8392 1.5961
97 1.5127 2.0521
98 1.9574 2.3555

101 .3945 .6478
102 .5880 .3883
103 .3349 .2318
104 .1823 1.3099
105 1.2336 1.0408
106 .9713 .2147
107 .1656 -. 0277
108 -. 0707 ..3883
109 .3349 .8042
110 .7405 .7127
ill .6512 .1994
112 .1507 .0372
113 -. 0074 42.6341
114 41.5319 79.2664
115 77.2548 56.2727
116 54.8319 25.2996
117 24.6278 3.1797
118 3.0571 1.4320
119 1.3527 1.6400
120 1.5555 53.1588
121 51.7953 10.8939
122 10.5797 50.6631
123 49.3616 26.6657 /

124 25.9600 -.2433
125 .1935 5.8109
126 5.6229 46.4082
127 45.2123 24.9008
128 24.2389 .8500
129 .7852 .2986
130 .2475 .3902
131 .3368 .0658
132 .0205 2.4127
133 2.3091 -. 4970
134 -. 5284 - .7832
135 -. 8075 - .7184
136 -. 7443 -. 6821
137 - .7089 - .1498
138 -. 1898 - .5409
139 -. 5712 -. 1402
140 - .1805 -. 3501
141 -. 3852 9.9742
142 9.6829 2.3345
143 2.2328 .5123
144 .4559 .2738
145 .2233 -. 3043
146 -. 3405 .5104
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147 .4540 .4951
148 .4391 .3654
149 .3126 .1708
150 .1228 -. 3120
151 -. 3479 -. 4245
152 -. 4577 .0525
153 .0074 .2853
154 .2344 -. 1059
155 -. 1470 -. 2185
156 -. 2568 -. 2452
157 -. 2828 -. 3902
158 -. 4242 -. 7241
161 .0688 .1040
162 .0577 .4112
163 .3572 .6440
164 .5842 -. 2490
165 -. 2865 -. 3444

PEAASON CORRELATION COEFFICIENTS BETWEEN THE VARIABLES
KVALUE IS THE RESPONSE VARIABLE)

LAG1 VALUE 1.00
'KVALUE .62 1.00

SPEARMAN RANK CORRELATION COEFFICIENTS BETWEEN THE VARIABLES
KVALUE IS THE RESPONSE VARIABLE)

LAGi VALUE 1.00
KVALUE .73 1.00

LEAST SQUARES REGRESSION

VARIABLE COEFFICIENT STAND. ERROR T - VALUE P - VALUE

LAG1 VALUE .61790 .06297 9.81196 .00000
CONSTANT 625.14990 109.59590 5.70413 .00000

SUM OF SQUARES - 34251960.00000

DEGREES OF FREEDOM " 156

SCALE ESTIMATE - 468.57640
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VARIANCE - COVARIANCE MATRIX -

.3966D-02
-. 6490D+01 .1201D+05

COEFFICIENT OF DETERMINATION (R SQUARED) .38163

THE F-VALUE 96.275 (WITH 1 AND 156 DF) P - VALUE = .00000

OBSERVED ESTIMATED RESIDUAL NO RES/SC
KVALUE KVALUE

1528.80000 1578.88500 -50.08472 1 -.11

1473.80000 1569.80200 -96.00171 2 -. 20

1422.70000 1535.81700 -113.11690 3 -. 24

1389.90000 1504.24200 -114.34190 4 -. 24

1382.00000 1483.97500 -101.97490 5 -. 22

1406.20000 1479.09300 -72.89331 6 -. 16
1384.50000 1494.04700 -109.54660 7 -. 23
1445.80000 1480.63800 -34.83801 8 -. 07

1411.20000 1518.51600 -107.31570 9 -. 23
1383.00000 1497.13600 -114.13610 10 -. 24
1372.50000 1479.71100 -107.21120 11 -. 23
1369.70000 1473.22300 -103.52320 12 -. 22
1374.60000 1471.49300 -96.89307 13 -. 21
1436.50000 1474.52100 -38.02075 14 -. 08
1399.30000 1512.76900 -113.46900 15 -. 24
1421.90000 1503.62400 -81.72400 19 -. 17

1422.70000 1503.74800 -81.04773 20 -. 17
1427.00000 1504.24200 -77.24194 21 -. 16
1436.00000 1506.89900 -70.89893 22 -. 15
1440.20000 1512.46000 -72.26025 23 -. 15

1450.90000 1515,05500 -64.15527 24 -. 14
1463.00000 1521.66700 -58.66699 25 -. 13
1473.90000 1529.14400 -55.24353 26 -. 12
1506.90000 1535.87900 -28.97864 27 -. 06
1526.00000 1556.27000 -30.26953 28 -. 06
1517.30000 1568.07200 -50.77148 29 -. 11
1491.70000 1562.69600 -70.99585 30 -. 15

1429.50000 1546.87700 -117.37740 31 -. 25
1402.30000 1508.44400 -106.14380 32 -. 23
1383.00000 1491.63700 -108.63670 33 -. 23

1393.90000 1479.71100 -85.81116 34 -. 18
1398.10000 1486.44600 -88.34644 35 -. 19
1488.00000 1489.04200 -1.04150 36 .00

1555.60000 1544.59100 11.00891 37 .02

1525.20000 1586.36100 -61.16150 38 -. 13
1614.30000 1567.57700 46.72290 39 .10
1613.20000 1622.63200 -9.43250 40 -. 02
1579.00000 1621.95300 -42.95264 41 -. 09
1358.90000 1600.82000 -241.92040 42 -. 52
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1411.80000 1464.82000 -53.01978 43 -. 11
1479.00000 1497.50700 -18.LC1684 44 -. 04
1508.80000 1539.03000 -30.22998 45 -. 06
1461.70000 1557.44400 -95.74365 46 -. 20
1474.80000 1528.34000 -53.54028 47 -. 11
1460.10000 1536.43500 -76.33484 48 -. 16
1490.50000 1527.35200 -36.85156 49 -. 08
1448.00000 1546.13600 -98.13599 50 -. 21
1422.50000 1519.87500 -97.37500 51 -. 21
1412.70000 1504.11800 -91.41846 52 -. 20
1467.30000 1498.06300 -30.76294 53 -. 07
1497.20000 1531.*80100 -34.60059 54 -. 07
1506.30000 1550.27600 -43.97583 55 -. 09
1547.30000 1555.89900 -8.59875 56 -. 02
1429.10000 1581.23300 -152.13290 57 -. 32
1512.30000 1508.19700 4.10352 58 .01
1530.20000 1559.60600 -29.40625 59 -. 06
1529.80000 1570.66700 -40.86670 60 -. 09
1516.50000 1570.42000 -53.91956 61 -. 12
1422.40000 1562.20100 -139.80140 62 -. 30
1495.40000 154070-8.65662 63 -. 02
1500.60000 1549.16400 -48.56360 64 -. 10
1488.60000 1552.37700 -63.77673 65 -. 14
1516.30000 1544.96200 -28.66187 66 -. 06
1512.50000 1562.07800 -49.57788 67 -. 11
1505.00000 1559.73000 -54.72974 68 -. 12
1497.70000 1555.09500 -57.39551 69 -. 12
1436.10000 1550.58500 -114.48470 70 -. 24
.1457.20000 1512.52200 -55.32202 71 -. 12
1556.60000 1525.56000 31.04028 72 .07
1546.60000 1586.97900 -40.3,7939 73 -. 09
1508.90000 1580.80000 -71.90027 74 -. 15
1478.50000 1557.50500 -79.00537 75 -. 17
1481.00000 1538.72100 -57.72107 76 -. 12
1462.80000 1540.26600 -77.46582 77 -. 17
1520.50000 1529.02000 -8.52002 78 -. 02
1532.20000 1564.67300 -32.47314 79 -. 07
1500.10000 1571.90200 -71.80249 80 -. 15
1493.60000 1552.06800 -58.46777 81 -. 12
1481.50000 1548.05100 -66.55139 82 -. 14
1501.50000 1540.57500 .- 39.07471 83 -. 08
1521.40000 1552.93300 -31.53284 84 -. 07
1467.00000 1565.22900 -98.22925 85 -. 21
1466.10000 1531.61500 -65.51526 86 -. 14
1480.60000 1531.05900 -50.45911 87 -. 11
1544.10000 1540.01900 4.08130 88 .01
1543.50000 1579.25600 -35.75562 89 -. 08
1539.90000 1578.88500 -38.98474 90 -. 08
1490.50000 1576.66000 -86.16040 91 -. 18
1495.50000 1546.13600 -50.63599 92 -. 11
1560.10000 1549.22500 10.87451 93 .02
1559.40000 1589.14200 -29.74207 94 -. 06



1548.50000 1588.70900 -40.20947 95 -. 09
1584.70000 1581.97400 2.72559 96 .01
1608.60000 1604.34300 4.25745 97 .01
1624.50000 1619.11000 5.38965 98 .01
1535.00000 1567.20600 -32.20642 101 -. 07
1521.40000 1573.63300 -52.23254 102 -.11
1513.20000 1565.22900 -52.02930 103 -.11
1569.70000 1560.16200 9.53760 104 .02
1555.60000 1595.07400 -39.47400 105 -. 08
1512.30000 1536.36100 -74.06140 106 -. 16
1499.60000 1559.60600 -60.00623 107 -. 13
1521.40000 1551.75900 -30.35876 108 -. 06
1543.20000 1565.22900 -22.02930 109 -. 05
1538.40000 1578.69900 -40.29944 110 -. 09
1511.50000 1575.73400 -64.23352 111 -. 14
1503.00000 1559.11200 -56.11182 112 -. 12
3735.50000 1553.86000 2181.64000 113 4.66
5655.40000 2933.33100 2722.06900 114 5.81
4450.30000 4119.64500 330.65530 115 .71
2827.00000 3375.00800 -548.00830 116 -1.17
1667.70000 2371.96500 -704.26490 117 -1.50
1576.10COO 1655.62900 -79.52856 118 -. 17
1587.00000 1599.02900 -12.02856 119 -. 03
4287.10000 1605.76400 2681.33600 120 5.72
2072.00000 3274.16700 -1202.16700 121 -2.57
4156.30000 1905.44700 2250.85300 122 4.80
2898.60000 3193.34400 -294.74440 123 -. 63
1513.80000 2416.20700 -902.40650 124 -1.93
1805.60000 1560.53300 245.06690 125 .52
3933.30000 1740.83700 2192.46300 126 4.68
2806.10000 3055.55200 -249.45190 127 -. 53
1545.60000 2359.05100 -813.45060 128 -1.74
1516.70000 1580.18200 -63.48242 129 -. 14
1521.50000 1562.32500 -40.82495 130 -. 09
1504.50000 1565.29100 -60.79102 131 -. 13
1627.50000 1554.7870u 72.71338 132 .16
1475.00000 1630.78900 -155.78880 133 -. 33
1460%00000 1536.55800 -76.55835 134 -. 16
1463.ý40000 1527.29C00 -63.88977 135 -. 14

.1465.30000 1529.39100 -64.09070 136 -. 14
1493.ý0000 1530.56500 -37.36475 137 -. 08
1472.70000 1547.80400 -75.10425 138 -. 16
1493.70000 1535.13700 -41.43726 139 -. 09
1482.70000 1548.11300 -65.41321 140 -. 14
2023.80000 1541.31600 482.48390 141 1.03
1623.49000 1875.66400 -252.26420 142 -. 54
1527.9d000 1628.25500 -100.35530 143 -. 21
1515.60 00 1569.24600 -53.84558 144 -. 11
1485.10000 1561.52200 -76.42175 145 -. 16
1527.80000 1542.79900 -14.99915 146 -. 03
1527.00000 1569.18400 -42.18384 147 -. 09
1520.20000 1568.68900 -48.48950 148 -. 10
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1510.00000 1564.48800 -54.48755 149 -. 12
1484.70000 1558.18500 -73.48511 150 -. 16
1478.80000 1542.55200 -63.75195 151 -. 14
1503.80000 1538.90600 -35.10645 152 -. 07
1516.00000 1554i35400 -38.35400 153 -. 08
1495.50000, 1561.89200 -66.39246 154 -. 14
1489.60000 1549.22500 -59.62549 155 -. 13
1488.20000 1545.58000 -57.37988 156 -. 12
1480.60000 1544.71500 -64.11475 157 -. 14
1463.10000 1540.01900 -76.91870 158 -. 16
1506.50000 1556.39300 -49.89307 161 - .11
1522.60000 1556.02200 -33.42249 162 -. 07
1534.80000 1565.97106 -31.17065 163 -. 07
1488.00000 1573.50900 -85.50903 .164 -. 18
1483.00000 1544.59100 -61.59106 165 -. 13
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I WIT.

LEAST MEDIAN OF SQUARES REGRESSION

THE MINIMIZATION OF THE 80TH ORDERED SQUARED RESIDUAL IS PERFORMED.

ON A TOTAL OF 1001 SUBSAMPLES (OF 2 POINTS OUT OF 158)
1 SUBSAMPLES LED TO A SINGULAR SYSTEM OF EQUATIONS.

THE SOLUTION IS ONLY BASED ON THE GOOD SUBSAMPLES.

VARIABLE COEFFICIENT

LAG1 VALUE .97052
CONSTANT 45.42432

FINAL SCALE ESTIMATE = 29.29300

COEFFICIENT OF DETERMINATION f .69456

OBSERVED ESTIMATED RESIDUAL NO RES/SC
KVALUE KVALUE

1528.80000 1543.41900 -14.61877 1 -. 50
1473.80000 1529.15200 -55.35217 2 -1.89
1422.70000 1475.77400 -53.07385 3 -1.81
1389.90000 1426.18000 -36.28015 4 -1.24
1382.00000 1394.34700 -12.34729 5 -. 42
1406.20000 1386.68000 19.51978 6 .67
1384.50000 1410.16700 -25.66663 7 -. 88
1445.80000 1389.10600 56.69360 8 1.94
1411.20000 1448.59900 -37.39929 9 -1.28
1383.00000 1415.01900 -32.01929 10 -1.09
1372.50000 1387.65100 -15.15076 11 -. 52
1369.70000 1377.46000 -7.76025 12 -. 26
1374.60000 1374.74300 -. 14282 13 .00
1436.50000 1379.49800 57.00171 14 1.95
1399.30000 1439.57300 -40.27332 15 -1.37
1421.90000 1425.21000 -3.30969 19 -. 11
1422.70000 1425.40400 -2.70398 20 -. 09
1427.00000 1426.18000 .81982 21 .03
1436.00000 1430.35400 5.64648 22 .19
1440.20000 1439.08800 1.11182 23 .04
1450.90000 1443.16400 7.73572 24 .26
1463.00000 1453.54900 9.45105 25 .32
1473.90000 1465.29200 8.60791 26 .29
1506.90000 1475.87100 31.02917 27 1.06
1526.00000 1507.89800 18.10205 28 .62
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1517.30000 1526.43500 -9.13477 29 -31
1491.70000 1517.99100 -26.29138 30 -. 90
1429.50000 1493.14600 -63.64600 31 -2.17
1402.30000 1432.78000 -30.47974 32 -1.04
1383.00000 1406.38200 -23.38171 33 - .80
1393.90000 1387.65100 6.24927 34 .21
1398.10000 1398.22900 -. 12939 35 .00
1488.00000 1402.30600 85.69446 36 2.93
1555.60000 1489.55500 66.04492 37 2.25
1525.20000 1555.16200 -29.96216 38 -1.02

1614.30000 1525.65800 88.64172 39 3.03
1613.20000 1612.13200 1.06836 40 .04

1579.00000 1611.06400 -32.063,84 41 -1.09
1358.90000 1577.87200 -218.97220 42 -7.48
1411.80000 1364.26100 47.53882 43 1.62
1479.00000 1415.60200 63.39832 44 2.16
1508.80000 1480.82000 27.97961 45 .96
1461.70000 1509.74200 -48.04199' 46 -1.64
1474.80000 1464.03000 10.76965 47 .37

1401001476.74400 -16.64429 48 -. 57
1490.50000 1462.47800 28.02234 49 .96
1448.00000 1491.98100 -43.98145 50 -1.50
1422.50000 1450.73400 -28.23438 51 - .96
1412.70000 1425.98600 -13.28625 52 -. 45
1467.30000 1416.47500 50.82495 53 1.74

1497.20000 1469.46500 27.73450 54 .95
1506.30000 1498.48400 7.81628 55 .27
1547.30000 1507.31600 39.98438 56 1.36
1429.10000 1547.10700 -118.00680 57 -4.03
1512.30000 1432.39200 79.90845 58 2.73
1530.20000 1513.13900 17.06128 59 .58
1r,3.80000 1530.51100 -. 71082 60 -. 02
1l.).6.50000 1530.12300. 13.62280 61 -. 47

1422.40000 1517.21500 -94.81482 62 -3.24
1495.40000 1425.88900 69.51086 63 2.37
1500.60000 1496.73700 3.86304 64 .13
1488.60000 1501.78400 -13.18359 65 -. 45
1516.30000 1490.13700 26.16272 66 .89
1512.50000 1517.02100 -4.52075 67 - .15
1505.00000 1513.33300 -8.33276 68 -. 28
1497.70000 1506.05400 -8.35400 69 -. 29
1436.10000 1498.96900 -62.86914 70 -2.15
1457.20000 1439.18500 18.01477 71 .61
1556.60000 1459.66300 96.93689 72 3.31
1546.60000 1556.13300 -9.53259 73 -. 33
1508.90000 1546.42700 -37.52734 74 -1.28
1478.50000 1509.83900 -31.33899 75 -1.07
1481.00000 1480.33500 .66479 76 .02
1462.80000 1482.76100 L19 *96143 77 -. 68
1520.50000 1465.09800 55.40186 78 1.89
1532.20000 1521.09700 11.10303 79 .38
1500.10000 1532.45200 -32.35193 80 -1.10
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1493.60000 1501.29800 -7.69836 81 -. 26
1481.50000 1494.99000 -13.48999 82 -. 46

1501.50000 1483.24700 18.25330 83 .62

1521.40000 1502.65700 18.74292 84 .64

1467.00000 1521.97000 -54.97046 85 -1.88

1466.10000 1469.17400 -3.07422 86 -. 10

1480.60000 1468.30100 12.29919 87 .42

1544.10000 1482.37300 61.72668 88. 2.11

1543.50000 1544.00100 -. 50110 89 -. 02

1539.90000 1543.41900 -3.51880 90 -. 12

1490.50000 1539.92500 -49.42505 91 -1.69

1495.50000 1491.98100 3.51855 92 .12

1560.10000 1496.83400 63.26599 93 ý2.16

1559.40000 1559.52900 -. 12939 94 .00

1548.50000 1558.85000 -10.35010 95 -. 35

1584.70000 1548.27100 36.42847 96 1.24

1608.60000 1583.40400 25.19580 97 ..86

1624.50000 1606.59900 17.90051 98 .61

1535.00000 1525.07600 9.92395 101 .34

1521.40000 1535.16900 -13.76941 102 -. 47

1513.20000 1521.97000 -8.77051 103 -. 30
1569.70000 1514.01200 55.68787 104 1.90
1555.60000 1568.84600 -13.24634 105 .-. 45

1512.30000 1555.16200 -42.86206 106 -1.46

1499.60000 1513.13900 -13.53870 107 -. 46

1521.40000 1500.81300 20.58691 108 .70

1543.20000 1521.97000 21.22949 109 .72

1538.40000 1543.12800 -4.72766 110 -. 16

1511.5000,0 1538.46900 -26.96924 111 -. 92

1503.00000 1512.36200 -9.36230 112 -. 32

3735.50000 1504.11300 2231.38700 113 76.17

5655.40000 3670.79400 1984.60500 114 67.75

4450.30000 5534.09200 -1083.79200 115 -37.00

2827.00000 4364.52100 -1537.52100 116 -52.49

1667.70000 2789.07900 -1121.37900 117 -38.28

1576.10000 1663.95700 -87.85718 118 -3.00

1587.00000 1575.05800 11.94226 119 .41

4287.10000 1585.63600 2701.46400 120 92.22

2072.00000 4206.13200 -2134.13200 121 -72.85

4156.30000 2056.33800 2099.96200 122 71.69
2898.60000 4079.18800 -1180.58800 123 -40.30

1513.80000 2858.56800 -1344.76800 124 -45.91
1805.60000 1514.59400 291.00550 125 9.93

3933.30000 1797.79200 2135.50800 126 72.90
2806.10000 3b62'.76300 -1056.66300 127 -36.07

1545.60000 2768.79500 -1223.19500 128 -41.76

1516.70000 1545.45700 -28.75696 129 -. 98
1521.50000 1517.40900 4.09106 130 .14

150-4.50000 1522.06700 -17.56738 131 -. 60

1627.50000 1505.56900 121.93140 132 4.16

1475.00000 1624.94200 -149.94240 133 -5.12

1460.00000 1476.93800 -16.93835 134 -. 58
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1463.40000 1462.38100 1.01941 135 .03

1465.30000 1465.68000 -. 38037 136 -. 01

1493.20000 1467.52400 25.67554 137 .88

1472.70000 1494.60200 -21.90173 138 -. 75

1493.70000 1474.70600 18.99377 139 .65

1482.70000 1495.08700 -12.38708 140 -. 42

2023.80000 1484.41100 539.38880 141 18.41

1623.40000 2009.55900 -386.15870 142 -13.18

1527.90000 1620.96300 -93.06323 143 -3.18

1515.40000 1528.27900 -12.87878 144 -. 44

1485.10000 1516.14700 -31.04736 145 -1.06

1527.80000 1486.74100 41.05945 146 1.40

1527.00000 1528.18200 -1.18176 147 -. 04

1520.20000 1527.40500 -7.20532 148 -. 25

1510.00000 1520.80600 -10.80566 149 -. 37

1484.70000 1510.90600 -26.20654 150 -. 89

1478.80000 1486.35200 -7.55225 151 -. 26

1503.80000 1480.62600 23.17371 152 .79

1516.00000 1504.88900 11.11072 153 .38

1495.50000 1516.73000 -21.22961 154 -. 72

1489.60000 1496.83400 -7.23401 155 -. 25

1488.20000 1491.10800 -2.90796 156 -. 10

1480.60000 1489.74900 -9.14917. 157 -. 31

1463.10000 1482.37300 -19.27332 158 -. 66

1506.50000 1508.09200 -1.59192 161 -. 05

1522.60000 15750015.09033 162 .52

1534.80000 1523.13500 11.66504 163 .40

1488.00000 1534.97500 -46.97534 164 -1.60

1483.00000 1489.55500 -6.55505 165 -. 22
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REWEIGHTED LEAST SQUARES BASED ON THE LMS

VARIABLE COEFFICIENT STAND. ERROR T - VALUE P - VALUE

LAG1 VALUE .84784 .04583 18.49899 .00000
CONSTANT 226.43360 68.25236 3.31759 .00118

WEIGHTED SUM OF SQUARES = 99323.21000

DEGREES OF FREEDOM = 129

SCALE ESTIMATE = 27.74793

VARIANCE - COVARIANCE MATRIX
/

.2101D-02
-. 3126D+01 .4658D+04

COEFFICIENT OF DETERMINATION (R SQUARED) - .72624

THE F-VALUE - 342.213 (WITH 1 AND 129 DF) P - VALUE - .00000

THERE ARE 131 POINTS WITH NON-ZERO WEIGHT.

AVERAGE WEIGHT - .82911

OBSERVED ESTIMATED RESIDUAL NO RES/SC WEIGHT
KVALUE KVALUE

1528.80000 1535.06800 -6.26758 1 --. 23 1.0
1473.80000 1522.60400 -48.80432 2 -1.76 1.0
1422.70000 1475.97400 -53.27356 3 -1.92 1.0
1389.90000 1432.64900 -42.74902 4 -1.54 1.0
1382.00000 1404.84000 -22.84009 5 -. 82 1.0
1406.20000 1398.14200 8.05786 6 .29 1.0
1384.50000 1418.66000 -34.15967 7 -1.23 1.0
1445.80000 1400.26200 45.53833 8 1.64 1.0
1411.20000 1452.23400 -41.03418 9 -1.48 1.0
1383.00000 1422.89900 -39.89893 10 -1.44 1.0
1372.50000 1398.99000 -26.48999 11 -. 95 1.0
1369.70000 1390.08800 -20.38770 12 -. 73 1.0
1374.60000 1387.71400 -13.11377 13 -. 47 1.0
1436.50000 1391.86800 44.63184 14 1.61 1.0
1399.30000 1444.34900 -45.04907 15 -1.62 1.0
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1421.90000 1431.80100 -9.90112 19 -.36 1.0

1422.70000 1431.97100 -9.27087 20 -.33 1.0

1427.00000 1432.64900 -5.64905 21 -.20 1.0

1436.00000 1436.29500 -.29480 22 -.01 1.0
1440.20000 1443.92500 -3.72534 23 -.13 1.0

1450.90000 1447.48600 3.41394 24 .12 1.0
1463.00000 1456.55800 6.44202 25 .23 1.0

1473.90000 1466.81700 7.08325 26 .26 1.0

1506.90000 1476.05800 30.84180 27 1.11 1.0

1526.00000 1504.03700 21.96313 28 .79 1.0

1517.30000 1520.23000 -2.93042 29 -.1 1 1.0

1491.70000 1512.85400 -21.15442 30 -.76 1.0

1429.50000 1491.15000 -61.64966 31 -2.22 1.0
1402.30000 1438.41400 -36.11426 32 -1.30 1.0

1383.00000 1415.35300 -32.35327 33 -1.17 1.0

1393.90000 1398.99000 -5.08997 34 -.18 1.0

13981 10000 1408.23100 -10.13147 35 -.37 1.0

1488.00000 1411.79200 76.20776 36 2.75 .0

1555.60000 1488.01300 67.58728 37 21.44 1.0

1525.20000 1545.32600 -20.12646 38 ...73 1.0

1614.30000 1519.55200 94.74792 39 3ý.41 .0

1613.20000 1595.09400 18.10559 40 .65 1.0

1579.00000 1594.16200 -15.16162 41 -5 .

1358.90000 1565.16600 -206.26570 42 .743 .0

1411.80000 1378.55700 33.24292 43 1l.20 1.0
1479.00000 1423.40800 55.59229 44 2.00 1.0
1508.80000 1480.38200 28.41785 45 1.02 1.0
1461.70000 1505.64800 -43.94775 46 -iZ.58 1.0
1474.80000 1465.71500 9.08545 47 i.33 1.0

1460.10000 1476.82100 -16.72131 48 .K60 1.0

1490.50000 1464.35800 26.14197 49 i.94 1.0
1448.00000 1490.13200 --42.13232 50 42.52 1.0

1422.50000 1454.09900 -31.59924 51 -1V.14 1.0

1412.70000 1432.47900 -19.77954 52 -1.71 1.0
1467.30000 1424.17100 43.12939 53 J~55 1.0
1497.20000 1470.46300 26.73743 54 1.96 1.0
1506.30000 1495.81300 10.48730 55 .3 1.0
1547.30000 1503.52800 43.77197 56 1.58 1.0

1429.10000 1538.28900 -109.18950 57 -3.94 .0
1512.30000 1438.07500 74.22485 58 2.67 .0

1530.20000 1508.61500 21.58484 59 .78 1.0

1529.80000 1523.79100 6.00879 60 .22 1.0
1516.50000 1523.45200 -6.95227 61 --.25 1.0
1422.40000 1512.17600 -89.77600 62 -3.24 .0

1495.40000 1432.39500 63.00525 63 2.27 1.0
1500.60000 1494.28700 6.31323 64 .23 1.0
1488.60000 1498.69500 -10.09546 65 -.36 1.0
1516.30000 1488.52100 27.77869 66 1.00 1.0
1512.50000 1512.0060'0 .49353 67 .02 1.0
1505.00000 1508.78500 -3.78467 68 -.14 1.0

1497. 170000 1502.42600 -4.72595 69 -.17 1.0 .

1436.10000 1496.23700 -60.13672 70 -2.17 1.0
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1457.20000 1444.01000 13.18994 71 .48 1.0
1556.60000 1461.89900 94.70068 72 3.41 .0
1546.60000 1546.17400 .42578 73 .02 1.0
1508.90000 1537.69600 -28.79578 74 -1.04 1.0
1478.50000 1505.73200 -27.23242 75 -. 98 1.0
1481.00000 1479.95800 1.04175 .76 .04 1.0
1462.80000 1482.07800 -19.27783 77 -. 69 1.0
1520.50000 1466.64700 53.85266 78 1.94 1.0
1532.20000 1515.56700 16.63257 79 .60 1.C
1500.10000 1525.48700 -25.38696 80 -. 91 1.0
1493.60000 1498.27100 -4.67151 81 -. 17 1.0
1481.50000 1492.76000 -11.26050 82 -. 41 1.0
1501.50000 1482.50200 18.99817 83 .68 1.0
1521.40000 1499.458'n0 21.94153 84 .79 1.0
1467.00000 1516.33000 -49.33044 85 -1.78 1.0
1466.10000 1470.20800' -4.10815 86 -. 15 1.0
1480.60000 1469.44500 11.15491 87 .40 1.0
1544.10000 1481.73900 62.36133 88 2.25 1.0
1543.50000 1535.57600 7.92371 89 .29 1.0
1539.90000 1535.06800 4.83240 90 .17 1.0
1490.50000 1532.01500 -41.51538 91 -1.50 1.0
1495.50000 1490.13200 5.36768 92 .19 1.0
1560.10000 1494.37100 65.72852 .93 2.37 1.0
1559.40000 1549.14200 10.25842 94 .37 1.0
1548.50000 1548.54800 -. 04822 95 .00 1.0
1584.70000 1539.30700 45.39319 96 1.64 1.0
1608.60000 1569.99800 38.60168 97 1.39 1.0
1624.50000 1590.26200 34.23840 98 1.23 1.0
1535.00000 1519.04300 15.95654 101 .58 1.0
1521.40000 1527.86100 -6.46094 102 -. 23 1.0
1513.20000 1516.33000 -3.13049 103 -. 11 1.0
1569.70000 1509.37800 60.32190 104 2.17 1.0
1555.60000 1557.28100 -1.68079 105 -. 06 1.0
1512.30000 1545.32600 -33.02637 106 -1.19 1.0
1499.60000 1508.61500 -9.01514 107 -. 32 1.0
1521.40000 1497.84800 23.55249 108 .85 1.0
1543.20000 1516.33000 26.86951 109 .97 1.0
1538.40000 1534.81300 3.58679 110 .13 1.0
1511.50000 1530.74400 -19.24365 111 -. 69 1.0
1503.00000 1507.93700 -4.93689 112 -. 18 1.0
3735.50000 1500.73000 2234.77000 113 80.54 .0
5655.40000 3393.52300 2261.87700 114 81.52 .0
4450.30000 5021.28200 -570.98190 115 -20.58 .0
2827.00000 3999.55500 -1172.55500 116 -42.26 .0
1667.70000 2623.26400 -955.56450 117 -34.44 .0
1576.10000 1640.36900 -64.26868 118 -2.32 .0
1587.00000 1562.70700 24.29297 119 .88 1.0
4287.10000 1571.94800 2715.15200 120 97.85 .0
2072.00000 3861.18900 -1789.18900 121 -64.48 .0
4156.30000 1983.14900 2173.15100 *122 78.32 .0
2898.60000 3750.29200 -851.69170 123 -30.69 .0
1513.80000 2683.96900 -1170.16900 124 -42.17 .0
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1805.60000 1509.88700 295.71310 125 10.66 .0
3933.30000 1757.28500 2176.01500 126 78.42 .0
2806.10000 3561.22500 -755.12450 127 -27.21 .0
1545.60000 2605.54500 -1059.94500 128 -38.20 .0
1516.70000 1536.84800 -20.14807 129 -. 73 1.0
1521.50000 1512.34600 9.15442 130 .33 1.0

1545001516.41500 -11.91516 131 -. 43 1.0
1627.50000 1502.00200 125.49800 132 4.52 .0
1475.00000 1606.28600 -131.28580 133 -4.73 .0
1460.00000 1476.99100 -16.99084 134 -. 61 1.0
1463.40000 14.64.27300 -. 81t329 135 -. 03 1.0
1465.30000 1467.15600 -1.85596 136 -. 07 1.0
1493.20000 1468.76700 24.43311 137 .88 1.0
1472.70000 1492.42100 -19.72144 138 -. 71 1.-0
1493.70000 1475.04100 18.65918 139 .67 1.0
1482.70000 1492.84500 -10.14539 140 -. 37 1.0
2023.80000 1483.51900 540.28090 141 19.47 .0
1623.40000 1942.28300 -318.88290 142 -11.49 .0
1527.90000 1602.81000 -74.90967 143 -2.70 .0
1515.40000 1521.84100 -6.44128 144 -. 23 1.0
1485.10000 1511.24300 -26.14343 145 -. 94 1.0
1527.80000 1485.55400 42.24609 146 1.52 1.0
1527.00000 1521.75700 5.24341 147 .19 1.0
1520.20000 1521.07800 -. 87830 148 -. 03 1.0
1510.00000 1515.31300 -5.31299 149 -. 19 1.0
1484.70000 1506.66500 -21.96509 150 -. 79 1.0
1478.80000 1485.21500 -6.41479 151 -. 23 1.0
1503.80000 1480.21300 23.58740 152 .85 1.0
1516.00000 1501.40900 14.59143 153 .53 1.0
1495.50000 1511.75200 -16.25208 154 -. 59 1.0
1489.60000 1494.37100 -4.77148 155 -. 17 1.10
1488.20000 1489.36900 -1.16931 156 -. 04 1.0
1480.60000 1488.18200 -7.58228 157 -. 27 1.0
1463.10000 1481.73900 -18.63867 158 -. 67 1.0
1506.50000 1504.20600 2.29370 161 .08 1.0
1522.60000 1503.69800 18.90234 162 .68 1.0
1534.80000 1517.34800 17.45227 163 .63 1.0
1488.00000 1527.69100 -39.69141 164 -1.43 1.0
1483.00000 1488.01300 -5.01270 165 -. 18 1.0
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DAYS 91251-91365 OF 889 YR 1991 USING KVALUE AND LAG ONE
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Appendix E: Corrolagrams

This appendix presents the correlograms, the ACF and PACF plots,

used in the results chapter. These plots were used to aid in the

determination of the order of autoregression appropriate for the AR(1)-

RLS model in the Results chapter. These correlograms were created

using S-Plus Statistical Software.
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